Search results for "Differentiable function"
showing 10 items of 75 documents
Planar maps whose second iterate has a unique fixed point
2007
Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…
On the symbol homomorphism of a certain Frechet algebra of singular integral operators
1985
We prove the surjectivity of the symbol map of the Frechet algebra obtained by completing an algebra of convolution and multiplication operators in the topology generated by all L2-Sobolev norms. The proof is based on an ℝn of Egorov's theorem valid for non-homogeneous principal symbols, discussed in [5], [6]. We use the hyperbolic equation ∂u/∂t=i|D|ηu, 0<η<1, which has its characteristic flow constant at infinity, so that no differentiability of the symbol is required there.
Absolutely continuous functions with values in a Banach space
2017
Abstract Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.
On certain extension theorems in the mixed Borel setting
2004
Abstract Given two sequences M 1 and M 2 of positive numbers, we give necessary and sufficient conditions under which the inclusions Λ { M 1 } ⊂ f (j) (0) j∈ N 0 : f∈ D { M 2 } [−1,1] , Λ ( M 1 ) ⊂ f (j) (0) j∈ N 0 : f∈ D ( M 2 ) [−1,1] hold, by means of explicit constructions. This answers a question raised by Chaumat and Chollet (Math. Ann. 298 (1994) 7–40). We also consider the case when [−1,1] is replaced by [−1,1]m as well as the possibility to get ultraholomorphic extensions.
A remark on absolutely continuous functions in ℝ n
2006
We introduce the notion ofα, λ-absolute continuity for functions of several variables and we compare it with the Hencl’s definition. We obtain that eachα, λ-absolutely continuous function isn, λ-absolutely continuous in the sense of Hencl and hence is continuous, differentiable almost everywhere and satisfies change of variables results based on a coarea formula and an area formula.
CHAOTIC POLYNOMIALS IN SPACES OF CONTINUOUS AND DIFFERENTIABLE FUNCTIONS
2008
AbstractWe construct chaotic m-homogeneous maps acting on $\mathcal{C}^{r}_{\mathtt{+}}( [0,\infty ))$ for any m ≥ 2, $r\in\mathbb{N}\cup\{0\},$ and on the Fréchet spaces $\mathcal{C}_{\mathbb{R}}(\mathbb{R})$ for odd values of m ≥ 3 and $\mathcal{C}_{\mathbb{C}}(\mathbb{R})$ for any m ≥ 2.
POINTS OF $\varepsilon$ -DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS FROM ${\bb R}^n$ TO ${\bb R}^{n-1}$
2002
This paper proves that for every Lipschitz function $f:{\bb R}^n\longrightarrow {\bb R}^m,\;m < n$ , there exists at least one point of $\varepsilon$ -differentiability of $f$ which is in the union of all $m$ -dimensional affine subspaces of the form $q_0+{\rm span}\{q_1,q_2,\ldots,q_m\},\;{\rm where}\;q_j(j=0,1,\ldots,m)$ are points in ${\bb R}^n$ with rational coordinates.
Radon–Nikodym Property and Area Formula for Banach Homogeneous Group Targets
2013
We prove a Rademacher-type theorem for Lipschitz mappings from a subset of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened Radon-Nikodym property. We provide a metric area formula that applies to these mappings and more generally to all almost everywhere metrically differentiable Lipschitz mappings defined on a Carnot group. peerReviewed
2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS
2008
AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.
Rademacher Theorem for Fréchet spaces
2010
Abstract Let X be a separable Frechet space. In this paper we define a class A of null sets in X that is properly contained in the class of Aronszajn null sets, and we prove that a Lipschitz map from an open subset of X into a Gelfand-Frechet space is Gateaux differentiable outside a set belonging to A. This is an extension to Frechet spaces of a result (see [PZ]) due to D. Preiss and L. Zajicek.