Search results for "Differentiable function"

showing 10 items of 75 documents

Planar maps whose second iterate has a unique fixed point

2007

Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…

Discrete mathematics37G10; 37G15; 34K18Algebra and Number TheoryApplied Mathematics37G15Dynamical Systems (math.DS)Fixed point37G10Homothetic transformationPlanar graphSet (abstract data type)symbols.namesakeMathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicssymbolsEmbeddingDifferentiable functionMathematics - Dynamical Systems34K18AnalysisEigenvalues and eigenvectorsMathematicsJournal of Difference Equations and Applications
researchProduct

On the symbol homomorphism of a certain Frechet algebra of singular integral operators

1985

We prove the surjectivity of the symbol map of the Frechet algebra obtained by completing an algebra of convolution and multiplication operators in the topology generated by all L2-Sobolev norms. The proof is based on an ℝn of Egorov's theorem valid for non-homogeneous principal symbols, discussed in [5], [6]. We use the hyperbolic equation ∂u/∂t=i|D|ηu, 0<η<1, which has its characteristic flow constant at infinity, so that no differentiability of the symbol is required there.

Discrete mathematicsAlgebra and Number TheoryFlow (mathematics)HomomorphismDifferentiable functionFréchet algebraConstant (mathematics)Symbol (formal)Hyperbolic partial differential equationAnalysisConvolutionMathematicsIntegral Equations and Operator Theory
researchProduct

Absolutely continuous functions with values in a Banach space

2017

Abstract Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.

Discrete mathematicsApplied Mathematics010102 general mathematicsBanach space0102 computer and information sciencesAbsolute continuity01 natural sciencesw⁎-DifferentiabilitySobolev spaceMetric differentiability010201 computation theory & mathematicsSettore MAT/05 - Analisi MatematicaPointwise Lipschitz functionAlmost everywhereDifferentiable function0101 mathematicsAnalysisMathematics
researchProduct

On certain extension theorems in the mixed Borel setting

2004

Abstract Given two sequences M 1 and M 2 of positive numbers, we give necessary and sufficient conditions under which the inclusions Λ { M 1 } ⊂ f (j) (0) j∈ N 0 : f∈ D { M 2 } [−1,1] , Λ ( M 1 ) ⊂ f (j) (0) j∈ N 0 : f∈ D ( M 2 ) [−1,1] hold, by means of explicit constructions. This answers a question raised by Chaumat and Chollet (Math. Ann. 298 (1994) 7–40). We also consider the case when [−1,1] is replaced by [−1,1]m as well as the possibility to get ultraholomorphic extensions.

Discrete mathematicsBeurling typeApplied MathematicsUltradifferentiable functionsRoumieu typeHolomorphic functionMixed Borel theoremExtension (predicate logic)AnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

A remark on absolutely continuous functions in ℝ n

2006

We introduce the notion ofα, λ-absolute continuity for functions of several variables and we compare it with the Hencl’s definition. We obtain that eachα, λ-absolutely continuous function isn, λ-absolutely continuous in the sense of Hencl and hence is continuous, differentiable almost everywhere and satisfies change of variables results based on a coarea formula and an area formula.

Discrete mathematicsChange of variablesContinuous functionGeneral MathematicsAlmost everywhereQuasi-continuous functionCoarea formulaDifferentiable functionAlgebra over a fieldAbsolute continuityMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

CHAOTIC POLYNOMIALS IN SPACES OF CONTINUOUS AND DIFFERENTIABLE FUNCTIONS

2008

AbstractWe construct chaotic m-homogeneous maps acting on $\mathcal{C}^{r}_{\mathtt{+}}( [0,\infty ))$ for any m ≥ 2, $r\in\mathbb{N}\cup\{0\},$ and on the Fréchet spaces $\mathcal{C}_{\mathbb{R}}(\mathbb{R})$ for odd values of m ≥ 3 and $\mathcal{C}_{\mathbb{C}}(\mathbb{R})$ for any m ≥ 2.

Discrete mathematicsGeneral MathematicsChaoticDifferentiable functionMathematicsGlasgow Mathematical Journal
researchProduct

POINTS OF $\varepsilon$ -DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS FROM ${\bb R}^n$ TO ${\bb R}^{n-1}$

2002

This paper proves that for every Lipschitz function $f:{\bb R}^n\longrightarrow {\bb R}^m,\;m < n$ , there exists at least one point of $\varepsilon$ -differentiability of $f$ which is in the union of all $m$ -dimensional affine subspaces of the form $q_0+{\rm span}\{q_1,q_2,\ldots,q_m\},\;{\rm where}\;q_j(j=0,1,\ldots,m)$ are points in ${\bb R}^n$ with rational coordinates.

Discrete mathematicsGeneral MathematicsDifferentiable functionLipschitz continuityLinear subspaceMathematicsBulletin of the London Mathematical Society
researchProduct

Radon–Nikodym Property and Area Formula for Banach Homogeneous Group Targets

2013

We prove a Rademacher-type theorem for Lipschitz mappings from a subset of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened Radon-Nikodym property. We provide a metric area formula that applies to these mappings and more generally to all almost everywhere metrically differentiable Lipschitz mappings defined on a Carnot group. peerReviewed

Discrete mathematicsMathematics::Functional AnalysisProperty (philosophy)General Mathematicsmetric area formulata111Mathematics::Analysis of PDEsCarnot groupBanach homogeneous groupsalmost everywhere differentiabilityRadon-Nikodym propertyLipschitz continuityRadon–Nikodym theoremBanach homogeneous groups; metric area formula; almost everywhere differentiability; Radon-Nikodym propertyMetric (mathematics)Homogeneous groupMathematics::Metric GeometryAlmost everywhereDifferentiable functionMathematics
researchProduct

2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS

2008

AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.

Discrete mathematicsNon-smooth critical point theory minmax theorems symmetric functionsGeneral MathematicsRegular polygonEven and odd functionsDifferentiable functionLipschitz continuityCritical point (mathematics)MathematicsGlasgow Mathematical Journal
researchProduct

Rademacher Theorem for Fréchet spaces

2010

Abstract Let X be a separable Frechet space. In this paper we define a class A of null sets in X that is properly contained in the class of Aronszajn null sets, and we prove that a Lipschitz map from an open subset of X into a Gelfand-Frechet space is Gateaux differentiable outside a set belonging to A. This is an extension to Frechet spaces of a result (see [PZ]) due to D. Preiss and L. Zajicek.

Discrete mathematicsNull (mathematics)Space (mathematics)Lipschitz continuitySeparable spaceCombinatoricsRademacher's theoremMathematics (miscellaneous)Fréchet spaceSettore MAT/05 - Analisi MatematicaDifferentiable functionMetric differentialMathematicsLipschitz maps Gateaux differentiability Rademacher theorem.
researchProduct