Search results for "Differentiable function"

showing 10 items of 75 documents

On the problem of regularity in the Sobolev space Wloc1,n

2009

Abstract We prove that a variant of the Hencl's notion of A C λ n -mapping (see [S. Hencl, On the notions of absolute continuity for functions of several variables, Fund. Math. 173 (2002) 175–189]), in which λ is not a constant, produces a new solution to the problem of regularity in the Sobolev space W loc 1 , n .

Pure mathematicsDifferentiabilityMathematical analysisAbsolute continuity Differentiability Lusin’s condition (N) Change of variables formulasChange of variables formulasAbsolute continuityAbsolute continuityLusin's condition (N)Sobolev inequalitySobolev spaceSettore MAT/05 - Analisi MatematicaGeometry and TopologyDifferentiable functionConstant (mathematics)MathematicsTopology and its Applications
researchProduct

A new full descriptive characterization of Denjoy-Perron integral

1995

It is proved that the absolute continuity of the variational measure generated by an additive interval function \(F\) implies the differentiability almost everywhere of the function \(F\) and gives a full descriptive characterization of the Denjoy-Perron integral.

Pure mathematicsHenstock–Kurzweil integralMathematical analysisMeasure (physics)Riemann integralFunction (mathematics)Absolute continuitysymbols.namesakesymbolsAlmost everywhereGeometry and TopologyDaniell integralDifferentiable functionAnalysisMathematics
researchProduct

Tangent lines and Lipschitz differentiability spaces

2015

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces. We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces. We show that any tangent space of a Lipschitz differentiability space contains at least $n$ distinct tangent lines, obtained as the blow-up of $n$ Lipschitz curves, whe…

Pure mathematicsLipschitz differentiability spaces; metric geometry; Ricci curvature; tangent of metric spaces01 natural sciencesMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaTangent lines to circles0103 physical sciencesTangent spaceClassical Analysis and ODEs (math.CA)FOS: Mathematicsmetric geometryDifferentiable function0101 mathematicsReal lineMathematicstangent of metric spacesQA299.6-433Applied Mathematics010102 general mathematicsTangentLipschitz differentiability spacesMetric Geometry (math.MG)Lipschitz continuityFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric spaceRicci curvatureMathematics - Classical Analysis and ODEsMetric (mathematics)010307 mathematical physicsGeometry and TopologyMathematics::Differential GeometryAnalysis
researchProduct

Infinite Dimensional Holomorphy

2019

We give an introduction to vector-valued holomorphic functions in Banach spaces, defined through Frechet differentiability. Every function defined on a Reinhardt domain of a finite-dimensional Banach space is analytic, i.e. can be represented by a monomial series expansion, where the family of coefficients is given through a Cauchy integral formula. Every separate holomorphic (holomorphic on each variable) function is holomorphic. This is Hartogs’ theorem, which is proved using Leja’s polynomial lemma. For infinite-dimensional spaces, homogeneous polynomials are defined as the diagonal of multilinear mappings. A function is holomorphic if and only if it is Gâteaux holomorphic and continuous…

Pure mathematicsMathematics::Complex VariablesHomogeneous polynomialBanach spaceHolomorphic functionDifferentiable functionHartogs' theoremInfinite-dimensional holomorphyMathematics::Symplectic GeometryCauchy's integral formulaAnalytic functionMathematics
researchProduct

Abstract and concrete tangent modules on Lipschitz differentiability spaces

2020

We construct an isometric embedding from Gigli's abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an isomorphism. Together with arguments from a recent article by Bate--Kangasniemi--Orponen, this equivalence is used to show that the ${\rm Lip}-{\rm lip}$ -type condition ${\rm lip} f\le C|Df|$ implies the existence of a Lipschitz differentiable structure, and moreover self-improves to ${\rm lip} f =|Df|$. We also provide a direct proof of a result by Gigli and the second author that, for a space with a strongly rectifiable decomposition, Gigli'…

Pure mathematicsMathematics::Functional AnalysisekvivalenssimatematiikkaApplied MathematicsGeneral MathematicsTangentMetric Geometry (math.MG)Space (mathematics)Lipschitz continuitymetriset avaruudetFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisMathematics - Metric GeometryFOS: MathematicsEmbedding53C23 46E35 49J52Mathematics::Metric GeometryDirect proofDifferentiable functionIsomorphismMathematics::Differential GeometryMathematicsMathematics
researchProduct

Holomorphic Functions on Polydiscs

2019

This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Frechet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral …

Pure mathematicsMonomialsymbols.namesakeHomogeneous polynomialEntire functionHolomorphic functionTaylor seriessymbolsDifferentiable functionCauchy's integral formulaAnalytic functionMathematics
researchProduct

Nowhere differentiable intrinsic Lipschitz graphs

2021

We construct intrinsic Lipschitz graphs in Carnot groups with the property that, at every point, there exist infinitely many different blow-up limits, none of which is a homogeneous subgroup. This provides counterexamples to a Rademacher theorem for intrinsic Lipschitz graphs.

Pure mathematicsProperty (philosophy)General MathematicsMathematics::Analysis of PDEs01 natural sciencesdifferentiaaligeometriasymbols.namesakeMathematics - Metric Geometry0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric GeometryPoint (geometry)Differentiable function0101 mathematicsMathematics010102 general mathematicsryhmäteoriaMetric Geometry (math.MG)16. Peace & justiceLipschitz continuity53C17 58C20 22E25Mathematics - Classical Analysis and ODEsHomogeneoussymbols010307 mathematical physicsCarnot cycleCounterexample
researchProduct

Behandlung eines Goursatproblems mit einer verallgemeinerten Riemannschen Methode

1973

In dieser Arbeit wird ein lineares Goursat problem in zwei Zeit- und einer Raumvariablen behandelt. Die Koeffizienten der betrachteten Differentialgleichung mussen hierbei nach allen Variablen beliebig oft differenzierbar sein und nebst all ihren partiellen Ableitungen bestimmten Wachstumsbeschrankungen genugen. Fur die Inhomogenitat und die Vorgaben werden gesonderte Voraussetzungen gestellt. Zuerst wird fur ein hinsichtlich der Anfangsbedingungen verallgemeinertes Goursatproblem die eindeutige Losbarkeit in der gleichen Funktionenklasse bewiesen, in der die Koeffizienten der Differentialgleichung liegen. Auf Grund dieses Ergebnisses gelingt es dann, mit Hilfe einer verallgemeinerten Riema…

Pure mathematicsRiemann hypothesissymbols.namesakeDifferential equationApplied MathematicsComputational MechanicssymbolsUniquenessDifferentiable functionMathematical physicsVariable (mathematics)MathematicsZAMM - Zeitschrift für Angewandte Mathematik und Mechanik
researchProduct

Adiabatic evolution for systems with infinitely many eigenvalue crossings

1998

International audience; We formulate an adiabatic theorem adapted to models that present an instantaneous eigenvalue experiencing an infinite number of crossings with the rest of the spectrum. We give an upper bound on the leading correction terms with respect to the adiabatic limit. The result requires only differentiability of the considered projector, and some geometric hypothesis on the local behavior of the eigenvalues at the crossings.

Rest (physics)Physics[ MATH ] Mathematics [math]Mathematical analysisSpectrum (functional analysis)FOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Mathematics::Spectral Theory01 natural sciencesUpper and lower boundsAdiabatic theorem0103 physical sciences010307 mathematical physicsDifferentiable functionLimit (mathematics)[MATH]Mathematics [math]010306 general physicsAdiabatic processMathematical PhysicsEigenvalues and eigenvectors
researchProduct

Bifurcations of Regular Limit Periodic Sets

1998

In this chapter, (X λ ) will be a smooth or analytic (in Section 3) family of vector fields on a phase space S, with parameter λ ∈ P, as in Chapter 1. Periodic orbits and elliptic singular points which are limits of sequences of limit cycles are called regular limit periodic sets. The reason for this terminology is that for such a limit periodic set Γ one can define local return maps on transversal segments, which are as smooth as the family itself. The limit cycles near Γ will be given by a smooth equation and the theory of bifurcations of limit cycles from Γ will reduce to the theory of unfoldings of differentiable functions. In fact, we will just need the Preparation Theorem and not the …

Section (fiber bundle)Pure mathematicsPhase spaceTransversal (combinatorics)Vector fieldLimit (mathematics)Differentiable functionCodimensionSingular point of a curveMathematics
researchProduct