6533b86efe1ef96bd12cc7a5
RESEARCH PRODUCT
Holomorphic Functions on Polydiscs
Pablo Sevilla-perisManuel MaestreDomingo GarcíaAndreas Defantsubject
Pure mathematicsMonomialsymbols.namesakeHomogeneous polynomialEntire functionHolomorphic functionTaylor seriessymbolsDifferentiable functionCauchy's integral formulaAnalytic functionMathematicsdescription
This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Frechet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral formula and a (formal) monomial series expansion. Every bounded analytic (represented by a convergent power series) function is holomorphic. Hilbert’s criterion, that gives conditions on a family of scalars so that it is attached to a bounded holomorphic function on B_{c0}. Homogeneous polynomials are those entire functions having non-zero coefficients only for multi-indices of a given order. We show how these are related to multilinear forms on c0 through the polarization formulas.
year | journal | country | edition | language |
---|---|---|---|---|
2019-08-08 |