0000000000121468

AUTHOR

Pablo Sevilla-peris

Vector-Valued Hardy Spaces

Given a Banach space X, we consider Hardy spaces of X-valued functions on the infinite polytorus, Hardy spaces of X-valued Dirichlet series (defined as the image of the previous ones by the Bohr transform), and Hardy spaces of X-valued holomorphic functions on l_2 ∩ B_{c0}. The chapter is dedicated to study the interplay between these spaces. It is shown that the space of functions on the polytorus always forms a subspace of the one of holomorphic functions, and these two are isometrically isomorphic if and only if X has ARNP. Then the question arises of what do we find in the side of Dirichlet series when we look at the image of the Hardy space of holomorphic functions. This is also answer…

research product

Hardy Spaces of Dirichlet Series

research product

Cotype 2 estimates for spaces of polynomials on sequence spaces

We give asymptotically correct estimations for the cotype 2 constant C2(P(mXn)) ofthe spaceP(mXn) of allm-homogenous polynomials onXn, the span of the firstn sequencesek=(\gdkj)j in a Banach sequence spaceX. Applications to Minkowski, Orlicz and Lorentz sequence spaces are given.

research product

The Dirichlet-Bohr radius

[EN] Denote by Ω(n) the number of prime divisors of n ∈ N (counted with multiplicities). For x ∈ N define the Dirichlet-Bohr radius P L(x) to be the best r > 0 such that for every finite Dirichlet polynomial n≤x ann −s we have X n≤x |an|r Ω(n) ≤ sup t∈R X n≤x ann −it . We prove that the asymptotically correct order of L(x) is (log x) 1/4x −1/8 . Following Bohr’s vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows to translate various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa

research product

Homomorphisms between Algebras of Holomorphic Functions

For two complex Banach spaces X and Y, in this paper, we study the generalized spectrum M-b(X,Y) of all nonzero algebra homomorphisms from H-b(X), the algebra of all bounded type entire functions on X into H-b(Y). We endow M-b(X,Y) with a structure of Riemann domain over L(X*,Y*) whenever.. is symmetrically regular. The size of the fibers is also studied. Following the philosophy of ( Aron et al., 1991), this is a step to study the set M-b,M-infinity (X,B-Y) of all nonzero algebra homomorphisms from Hb(b) (X) into H-infinity (B-Y) of bounded holomorphic functions on the open unit ball of Y and M-infinity(B-X,B-Y) of all nonzero algebra homomorphisms from H-infinity(B-X) into H infinity (B-Y…

research product

Hardy–Littlewood Inequality

research product

A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions

[EN] In this paper we give general conditions on a countable family V of weights on an unbounded open set U in a complex Banach space X such that the weighted space HV (U) of holomorphic functions on U has a Frechet algebra structure. For such weights it is shown that the spectrum of HV(U) has a natural analytic manifold structure when X is a symmetrically regular Banach space, and in particular when X = C-n. (C) 2009 Elsevier Ltd. All rights reserved.

research product

Functions of One Variable

A classical result of Fatou gives that every bounded holomorphic function on the disc has radial limits for almost every point in the torus, and the limit function belongs to the Hardy space H_\infty of the torus. This property is no longer true when we consider vector-valued functions. The Banach spaces X for which this property is satisfied are said to have the analytic Radon-Nikodym property (ARNP). Some important equivalent reformulations of ARNP are studied in this chapter. Among others, X has ARNP if and only if each X-valued H_p- function f on the disc has radial limits almost everywhere on the torus (and not only H_\infty-functions). Even more, in this case each such f has non-tange…

research product

Invertibility in tensor products of Q-algebras

research product

Selected Topics on Banach Space Theory

Basic topics on Banach space theory needed for the text are reviewed. Hahn-Banach theorem, Baire’s theorem, uniform boundedness principle, closed graph theorem, weak topologies, Banach-Alaoglu theorem, unconditional basis, Banach sequence spaces, summing operators, factorable operators, cotype, Kahane inequality.

research product

Holomorphic Functions on Polydiscs

This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Frechet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral …

research product

Infinite Dimensional Holomorphy

We give an introduction to vector-valued holomorphic functions in Banach spaces, defined through Frechet differentiability. Every function defined on a Reinhardt domain of a finite-dimensional Banach space is analytic, i.e. can be represented by a monomial series expansion, where the family of coefficients is given through a Cauchy integral formula. Every separate holomorphic (holomorphic on each variable) function is holomorphic. This is Hartogs’ theorem, which is proved using Leja’s polynomial lemma. For infinite-dimensional spaces, homogeneous polynomials are defined as the diagonal of multilinear mappings. A function is holomorphic if and only if it is Gâteaux holomorphic and continuous…

research product