6533b7d8fe1ef96bd1269a07

RESEARCH PRODUCT

The Dirichlet-Bohr radius

Pablo Sevilla-perisDomingo A. GarcíAndreas DefantDaniel CarandoManuel Maestre

subject

MatemáticasHolomorphic functionDirichlet distributionMatemática Purasymbols.namesakeHolomorphic functionsFOS: MathematicsPict (programming language)Number Theory (math.NT)Dirichlet seriesDirichlet series11M41 30B50 11M36MathematicsMathematical physicscomputer.programming_languageBohr radiusAlgebra and Number TheoryMathematics - Number TheoryFunctional Analysis (math.FA)Mathematics - Functional AnalysissymbolsMATEMATICA APLICADAcomputerCIENCIAS NATURALES Y EXACTASBohr radius

description

[EN] Denote by Ω(n) the number of prime divisors of n ∈ N (counted with multiplicities). For x ∈ N define the Dirichlet-Bohr radius P L(x) to be the best r > 0 such that for every finite Dirichlet polynomial n≤x ann −s we have X n≤x |an|r Ω(n) ≤ sup t∈R X n≤x ann −it . We prove that the asymptotically correct order of L(x) is (log x) 1/4x −1/8 . Following Bohr’s vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows to translate various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa

https://dx.doi.org/10.48550/arxiv.1412.5947