0000000000311856

AUTHOR

Daniel Carando

0000-0002-5519-8697

The Dirichlet-Bohr radius

[EN] Denote by Ω(n) the number of prime divisors of n ∈ N (counted with multiplicities). For x ∈ N define the Dirichlet-Bohr radius P L(x) to be the best r > 0 such that for every finite Dirichlet polynomial n≤x ann −s we have X n≤x |an|r Ω(n) ≤ sup t∈R X n≤x ann −it . We prove that the asymptotically correct order of L(x) is (log x) 1/4x −1/8 . Following Bohr’s vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows to translate various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa

research product

Homomorphisms and composition operators on algebras of analytic functions of bounded type

Abstract Let U and V be convex and balanced open subsets of the Banach spaces X and Y, respectively. In this paper we study the following question: given two Frechet algebras of holomorphic functions of bounded type on U and V, respectively, that are algebra isomorphic, can we deduce that X and Y (or X * and Y * ) are isomorphic? We prove that if X * or Y * has the approximation property and H wu ( U ) and H wu ( V ) are topologically algebra isomorphic, then X * and Y * are isomorphic (the converse being true when U and V are the whole space). We get analogous results for H b ( U ) and H b ( V ) , giving conditions under which an algebra isomorphism between H b ( X ) and H b ( Y ) is equiv…

research product

Cluster values of holomorphic functions of bounded type

We study the cluster value theorem for Hb(X), the Fréchet algebra of holomorphic functions bounded on bounded sets of X. We also describe the (size of) fibers of the spectrum of Hb(X). Our results are rather complete whenever X has an unconditional shrinking basis and for X = ℓ1. As a byproduct, we obtain results on the spectrum of the algebra of all uniformly continuous holomorphic functions on the ball of ℓ1. Fil: Aron, Richard Martin. Kent State University; Estados Unidos Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Lassalle, S…

research product

A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions

[EN] In this paper we give general conditions on a countable family V of weights on an unbounded open set U in a complex Banach space X such that the weighted space HV (U) of holomorphic functions on U has a Frechet algebra structure. For such weights it is shown that the spectrum of HV(U) has a natural analytic manifold structure when X is a symmetrically regular Banach space, and in particular when X = C-n. (C) 2009 Elsevier Ltd. All rights reserved.

research product