6533b839fe1ef96bd12a633b

RESEARCH PRODUCT

Functions of One Variable

Pablo Sevilla-perisManuel MaestreAndreas DefantDomingo García

subject

Pure mathematicssymbols.namesakeSubharmonic functionBounded functionBanach spaceHolomorphic functionsymbolsAlmost everywhereTorusHardy–Littlewood maximal functionHardy spaceMathematics

description

A classical result of Fatou gives that every bounded holomorphic function on the disc has radial limits for almost every point in the torus, and the limit function belongs to the Hardy space H_\infty of the torus. This property is no longer true when we consider vector-valued functions. The Banach spaces X for which this property is satisfied are said to have the analytic Radon-Nikodym property (ARNP). Some important equivalent reformulations of ARNP are studied in this chapter. Among others, X has ARNP if and only if each X-valued H_p- function f on the disc has radial limits almost everywhere on the torus (and not only H_\infty-functions). Even more, in this case each such f has non-tangential limits within any Stolz region. The basic tools are subharmonic functions and certain maximal inequalities. Finally, it is shown that if X has the ARNP, then every L_p of functions taking values in X with a finite measure also has ARNP.

https://doi.org/10.1017/9781108691611.028