Search results for "Differential equation"

showing 10 items of 759 documents

A Unifying Framework for Perturbative Exponential Factorizations

2021

We propose a framework where Fer and Wilcox expansions for the solution of differential equations are derived from two particular choices for the initial transformation that seeds the product expansion. In this scheme, intermediate expansions can also be envisaged. Recurrence formulas are developed. A new lower bound for the convergence of theWilcox expansion is provided, as well as some applications of the results. In particular, two examples are worked out up to a high order of approximation to illustrate the behavior of the Wilcox expansion.

Differential equationGeneral MathematicsEquacions diferencials01 natural sciencesUpper and lower bounds010305 fluids & plasmas0103 physical sciencesConvergence (routing)Fer expansionComputer Science (miscellaneous)Applied mathematicsZassenhaus formula010306 general physicsEngineering (miscellaneous)Mathematicslcsh:MathematicsBellman problemWilcox expansionOrder (ring theory)lcsh:QA1-939Exponential functionTransformation (function)sequences of linear transformationsProduct (mathematics)Scheme (mathematics)MatemàticaMathematics
researchProduct

On the construction of lusternik-schnirelmann critical values with application to bifurcation problems

1987

An iterative method to construct Lusternik-Schnirelmann critical values is presented. Examples of its use to obtain numerical solutions to nonlinear eigenvalue problems and their bifurcation branches are given

Differential equationIterative methodApplied MathematicsMathematical analysisMathematics::General TopologyBifurcation diagramMathematics::Algebraic TopologyNonlinear systemBifurcation theoryTranscritical bifurcationAnalysisEigenvalues and eigenvectorsBifurcationMathematicsApplicable Analysis
researchProduct

A hierarchy of simplified constitutive models within isotropic strain gradient elasticity

2017

Abstract Simplified isotropic models of strain gradient elasticity are presented, based on the mutual relationship between the inherent (dual) gradient directions (i.e. the gradient direction of any strain gradient source and the lever arm direction of the promoted double stress). A class of gradient-symmetric materials featured by gradient directions obeying a reciprocity relation and by 4 independent h.o. (higher order) coefficients is envisioned, along with the sub-classes of hemi-collinear materials (3 h.o. coefficients, gradient directions in part coincident), collinear materials (2 h.o. coefficients, equal gradient directions) and micro-affine materials (1 h.o. coefficient, behavioral…

Differential equationMechanical EngineeringMathematical analysisIsotropyGeneral Physics and AstronomyGeometry02 engineering and technology021001 nanoscience & nanotechnology020303 mechanical engineering & transports0203 mechanical engineeringPositive definitenessMechanics of MaterialsCoincidentReciprocity (electromagnetism)TorqueGeneral Materials ScienceBoundary value problemElasticity (economics)0210 nano-technologyMathematicsEuropean Journal of Mechanics - A/Solids
researchProduct

Stochastic dynamics of nonlinear systems with a fractional power-law nonlinear term: The fractional calculus approach

2011

Fractional power-law nonlinear drift arises in many applications of engineering interest, as in structures with nonlinear fluid viscous–elastic dampers. The probabilistic characterization of such structures under external Gaussian white noise excitation is still an open problem. This paper addresses the solution of such a nonlinear system providing the equation governing the evolution of the characteristic function, which involves the Riesz fractional operator. An efficient numerical procedure to handle the problem is also proposed.

Differential equationOpen problemAerospace EngineeringOcean EngineeringFractional calculuStochastic differential equationsymbols.namesakeFractional programmingNonlinear viscous–elastic damperCivil and Structural EngineeringMathematicsStochastic differential equationMechanical EngineeringCharacteristic functionMathematical analysisPower-law driftStatistical and Nonlinear PhysicsWhite noiseCondensed Matter PhysicsFractional differential equationFractional calculusNonlinear systemNuclear Energy and EngineeringGaussian noisesymbolsSettore ICAR/08 - Scienza Delle CostruzioniProbabilistic Engineering Mechanics
researchProduct

Gaussian and non-Gaussian stochastic sensitivity analysis of discrete structural systems

2000

Abstract The derivatives of the response of a structural system with respect to the system parameters are termed sensitivities. They play an important role in assessing the effect of uncertainties in the mathematical model of the system and in predicting changes of the response due to changes of the design parameters. In this paper, a time domain approach for evaluating the sensitivity of discrete structural systems to deterministic, as well as to Gaussian or non-Gaussian stochastic input is presented. In particular, in the latter case, the stochastic input has been assumed to be a delta-correlated process and, by using Kronecker algebra extensively, cumulant sensitivities of order higher t…

Differential equationStochastic processGaussianMechanical EngineeringStructural systemstochastic analysisComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science Applicationssymbols.namesakeControl theoryKronecker deltaModeling and SimulationsymbolsApplied mathematicsGeneral Materials ScienceSensitivity (control systems)Time domainMaterials Science (all)Sensitivity analysis; stochastic analysis; Non-Gaussian stochastic analysisSensitivity analysisGaussian processNon-Gaussian stochastic analysisMathematicsCivil and Structural Engineering
researchProduct

Pseudo-force method for a stochastic analysis of nonlinear systems

1996

Nonlinear systems, driven by external white noise input processes and handled by means of pseudo-force theory, are transformed through simple coordinate transformation to quasi-linear systems. By means of Itô stochastic differential calculus for parametric processes, a finite hierarchy for the moment equations of these systems can be exactly obtained. Applications of this procedure to the first-order differential equation with cubic nonlinearity and to the Duffing oscillator show the versatility of the proposed method. The accuracy of the proposed procedure improves by making use of the classical equivalent linearization technique.

Differential equationStochastic processNumerical analysisMechanical EngineeringMathematical analysisDuffing equationAerospace EngineeringStatistical and Nonlinear PhysicsDifferential calculusOcean EngineeringWhite noiseCondensed Matter PhysicCondensed Matter PhysicsNonlinear systemNuclear Energy and EngineeringLinearizationMathematicsStatistical and Nonlinear PhysicCivil and Structural Engineering
researchProduct

An Application of the Fixed Point Theory to the Study of Monotonic Solutions for Systems of Differential Equations

2020

In this paper, we establish some conditions for the existence and uniqueness of the monotonic solutions for nonhomogeneous systems of first-order linear differential equations, by using a result of the fixed points theory for sequentially complete gauge spaces.

Differential equationfixed point theorylcsh:MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisFixed-point theoremMonotonic functionGauge (firearms)Fixed pointlcsh:QA1-939sequentially complete gauge spaces.01 natural sciences010101 applied mathematicsLinear differential equationComputer Science (miscellaneous)systems of differential equationsexistence and uniqueness theoremsUniqueness0101 mathematicsEngineering (miscellaneous)monotonic solutionsMathematicsMathematics
researchProduct

Matemātika

1994

Differential equationsLoģikaFunkcionālanalīzeAlgebraFunctional analysis:MATHEMATICS [Research Subject Categories]TopoloģijaAproksimāciju teorijaMatemātikaApproximation theoryDiferenciālvienādojumiLogicsTopology
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

2017

Abstract The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

DiffractionHelmholtz equationDifferential equationFOS: Physical sciences02 engineering and technologyPhysics - Classical Physics01 natural sciences010309 opticssymbols.namesake020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringCylindrical coordinate systemSpectroscopyPhysicsRadiationbusiness.industryMathematical analysisParaxial approximationClassical Physics (physics.class-ph)Atomic and Molecular Physics and OpticsExact solutions in general relativitysymbolsbusinessSeries expansionBessel functionOptics (physics.optics)Physics - Optics
researchProduct