Search results for "Differential equation"
showing 10 items of 759 documents
A third order partial differential equation for isotropic boundary based triangular Bézier surface generation
2011
Abstract We approach surface design by solving a linear third order Partial Differential Equation (PDE). We present an explicit polynomial solution method for triangular Bezier PDE surface generation characterized by a boundary configuration. The third order PDE comes from a symmetric operator defined here to overcome the anisotropy drawback of any operator over triangular Bezier surfaces.
Explicit Bézier control net of a PDE surface
2017
The PDE under study here is a general fourth-order linear elliptic Partial Differential Equation. Having prescribed the boundary control points, we provide the explicit expression of the whole control net of the associated PDE Bézier surface. In other words, we obtain the explicit expressions of the interior control points as linear combinations of free boundary control points. The set of scalar coefficients of these combinations works like a mould for PDE surfaces. Thus, once this mould has been computed for a given degree, real-time manipulation of the resulting surfaces becomes possible by modifying the prescribed information. The work was partially supported by Spanish Ministry of Econo…
Infinitely many solutions to boundary value problem for fractional differential equations
2018
Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.
A Lagrangian method for deriving new indefinite integrals of special functions
2015
A new method is presented for obtaining indefinite integrals of common special functions. The approach is based on a Lagrangian formulation of the general homogeneous linear ordinary differential equation of second order. A general integral is derived which involves an arbitrary function, and therefore yields an infinite number of indefinite integrals for any special function which obeys such a differential equation. Techniques are presented to obtain the more interesting integrals generated by such an approach, and many integrals, both previously known and completely new are derived using the method. Sample results are given for Bessel functions, Airy functions, Legendre functions and hype…
On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms
2010
We study one class of nonlinear fluid dynamic models with impulse source terms. The model consists of a system of two hyperbolic conservation laws: a nonlinear conservation law for the goods density and a linear evolution equation for the processing rate. We consider the case when influx-rates in the second equation take the form of impulse functions. Using the vanishing viscosity method and the so-called principle of fictitious controls, we show that entropy solutions to the original Cauchy problem can be approximated by optimal solutions of special optimization problems.
A strongly degenerate quasilinear elliptic equation
2005
Abstract We prove existence and uniqueness of entropy solutions for the quasilinear elliptic equation u - div a ( u , Du ) = v , where 0 ⩽ v ∈ L 1 ( R N ) ∩ L ∞ ( R N ) , a ( z , ξ ) = ∇ ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ∥ ξ ∥ → ∞ , satisfying other additional assumptions. In particular, this class of equations includes the elliptic problems associated to a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics, respectively. In a second part of this work, using Crandall–Liggett's iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding…
Explicit solutions for a system of coupled Lyapunov differential matrix equations
1987
This paper is concerned with the problem of obtaining explicit expressions of solutions of a system of coupled Lyapunov matrix differential equations of the typewhere Fi, Ai(t), Bi(t), Ci(t) and Dij(t) are m×m complex matrices (members of ℂm×m), for 1≦i, j≦N, and t in the interval [a,b]. When the coefficient matrices of (1.1) are timeinvariant, Dij are scalar multiples of the identity matrix of the type Dij=dijI, where dij are real positive numbers, for 1≦i, j≦N Ci, is the transposed matrix of Bi and Fi = 0, for 1≦i≦N, the Cauchy problem (1.1) arises in control theory of continuous-time jump linear quadratic systems [9–11]. Algorithms for solving the above particular case can be found in [1…
Boundary value steady solutions of a class of hydrodynamic models for vehicular traffic flow
2003
This paper deals with the solution of a boundary value problem related to a steady nonuniform description of a class of traffic flow models. The models are obtained by the closure of the mass conservation equation with a phenomenological relation linking the local mass velocity to the local density. The analysis is addressed to define the proper framework toward the identification of the parameter characterizing the model. The last part of the paper develops a critical analysis also addressed to the design of new traffic flow models.
Solution of a cauchy problem for an infinite chain of linear differential equations
2005
Defining the recurrence relations for orthogonal polynomials we have found an exact solution of a Cauchy problem for an infinite chain of linear differential equations with constant coefficients. These solutions have been found both for homogeneous and an inhomogeneous systems.
Systèmes hyperboliques d'équations aux dérivées partielles linéaires : régularité et matrices diagonalisables
2001
Resume La regularite des solutions d'un systeme d'equations aux derivees partielles hyperbolique, est liee aux proprietes spectrales d'un faisceaux de matrices reelles. Nous nous interessons ici a la regularite L 2 . Celle ci est obtenue si et seulement si l'exponentielle imaginaire du faisceau est bornee. Nous regardons le lien entre cette condition et les proprietes spectrales du faisceau, ici diagonalisable sur R . Nous donnons en particulier un critere d'exponentielle bornee si les valeurs propres ne sont pas de multiplicites constantes, et nous montrons que dans le cas des faisceaux engendres par deux matrices 3×3, l'exponentielle est bornee si et seulement si le faisceau est analytiqu…