Search results for "Differential equation"

showing 10 items of 759 documents

A third order partial differential equation for isotropic boundary based triangular Bézier surface generation

2011

Abstract We approach surface design by solving a linear third order Partial Differential Equation (PDE). We present an explicit polynomial solution method for triangular Bezier PDE surface generation characterized by a boundary configuration. The third order PDE comes from a symmetric operator defined here to overcome the anisotropy drawback of any operator over triangular Bezier surfaces.

Bézier surfaceSurface (mathematics)PolynomialPartial differential equationPDE surfaceOperator (physics)Applied MathematicsMathematical analysisFirst-order partial differential equationBoundary (topology)Partial differential equationIsotropyPDE surfaceComputational MathematicsComputer Science::GraphicsBézier triangleExplicit solutionMathematicsJournal of Computational and Applied Mathematics
researchProduct

Explicit Bézier control net of a PDE surface

2017

The PDE under study here is a general fourth-order linear elliptic Partial Differential Equation. Having prescribed the boundary control points, we provide the explicit expression of the whole control net of the associated PDE Bézier surface. In other words, we obtain the explicit expressions of the interior control points as linear combinations of free boundary control points. The set of scalar coefficients of these combinations works like a mould for PDE surfaces. Thus, once this mould has been computed for a given degree, real-time manipulation of the resulting surfaces becomes possible by modifying the prescribed information. The work was partially supported by Spanish Ministry of Econo…

Bézier surfaceSurface GenerationPartial differential equationPDE surfaceScalar (mathematics)Mathematical analysis020207 software engineeringBézier curve010103 numerical & computational mathematics02 engineering and technologyBiharmonic Bézier surfaceBiharmonic surface01 natural sciencesComputational MathematicsPDE surfacePartial Differential EquationComputational Theory and MathematicsElliptic partial differential equationExplicit solutionModeling and Simulation0202 electrical engineering electronic engineering information engineering0101 mathematicsLinear combinationTensor product Bézier surfaceMathematicsComputers & Mathematics with Applications
researchProduct

Infinitely many solutions to boundary value problem for fractional differential equations

2018

Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.

Caputo fractional derivativeApplied Mathematics010102 general mathematicscritical pointAnalysiRiemann-Liouville fractional derivativeinfinitely many solution01 natural sciencesvariational method010101 applied mathematicsfractional differential equationApplied mathematicsBoundary value problem0101 mathematicsFractional differentialAnalysisMathematics
researchProduct

A Lagrangian method for deriving new indefinite integrals of special functions

2015

A new method is presented for obtaining indefinite integrals of common special functions. The approach is based on a Lagrangian formulation of the general homogeneous linear ordinary differential equation of second order. A general integral is derived which involves an arbitrary function, and therefore yields an infinite number of indefinite integrals for any special function which obeys such a differential equation. Techniques are presented to obtain the more interesting integrals generated by such an approach, and many integrals, both previously known and completely new are derived using the method. Sample results are given for Bessel functions, Airy functions, Legendre functions and hype…

Carlson symmetric formApplied MathematicsMathematical analysisTrigonometric integralVolume integralOrder of integration (calculus)Legendre formMathematics - Classical Analysis and ODEsSpecial functionsIntegro-differential equationSlater integralsClassical Analysis and ODEs (math.CA)FOS: MathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms

2010

We study one class of nonlinear fluid dynamic models with impulse source terms. The model consists of a system of two hyperbolic conservation laws: a nonlinear conservation law for the goods density and a linear evolution equation for the processing rate. We consider the case when influx-rates in the second equation take the form of impulse functions. Using the vanishing viscosity method and the so-called principle of fictitious controls, we show that entropy solutions to the original Cauchy problem can be approximated by optimal solutions of special optimization problems.

Cauchy problemConservation lawOptimization problemEntropy solutionsArticle SubjectVanishing viscosity methodMathematical analysisNonlinear fluid dynamicmodelsNonlinear conservation lawlcsh:QA75.5-76.95Computer Science ApplicationsNonlinear systemlcsh:TA1-2040Modeling and SimulationEvolution equationNonlinear fluid dynamicmodels; Vanishing viscosity method; Principle of fictitious controls; Entropy solutionsPrinciple of fictitious controlslcsh:Electronic computers. Computer scienceElectrical and Electronic Engineeringlcsh:Engineering (General). Civil engineering (General)Hyperbolic partial differential equationEntropy (arrow of time)MathematicsJournal of Control Science and Engineering
researchProduct

A strongly degenerate quasilinear elliptic equation

2005

Abstract We prove existence and uniqueness of entropy solutions for the quasilinear elliptic equation u - div a ( u , Du ) = v , where 0 ⩽ v ∈ L 1 ( R N ) ∩ L ∞ ( R N ) , a ( z , ξ ) = ∇ ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ∥ ξ ∥ → ∞ , satisfying other additional assumptions. In particular, this class of equations includes the elliptic problems associated to a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics, respectively. In a second part of this work, using Crandall–Liggett's iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding…

Cauchy problemElliptic curveDiffusion equationElliptic partial differential equationApplied MathematicsMathematical analysisDegenerate energy levelsHeat equationUniquenessConvex functionAnalysisMathematicsMathematical physicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Explicit solutions for a system of coupled Lyapunov differential matrix equations

1987

This paper is concerned with the problem of obtaining explicit expressions of solutions of a system of coupled Lyapunov matrix differential equations of the typewhere Fi, Ai(t), Bi(t), Ci(t) and Dij(t) are m×m complex matrices (members of ℂm×m), for 1≦i, j≦N, and t in the interval [a,b]. When the coefficient matrices of (1.1) are timeinvariant, Dij are scalar multiples of the identity matrix of the type Dij=dijI, where dij are real positive numbers, for 1≦i, j≦N Ci, is the transposed matrix of Bi and Fi = 0, for 1≦i≦N, the Cauchy problem (1.1) arises in control theory of continuous-time jump linear quadratic systems [9–11]. Algorithms for solving the above particular case can be found in [1…

Cauchy problemLyapunov functionSequenceDifferential equationGeneral MathematicsMathematical analysisIdentity matrixsymbols.namesakeMatrix (mathematics)symbolsInitial value problemApplied mathematicsBoundary value problemMathematicsProceedings of the Edinburgh Mathematical Society
researchProduct

Boundary value steady solutions of a class of hydrodynamic models for vehicular traffic flow

2003

This paper deals with the solution of a boundary value problem related to a steady nonuniform description of a class of traffic flow models. The models are obtained by the closure of the mass conservation equation with a phenomenological relation linking the local mass velocity to the local density. The analysis is addressed to define the proper framework toward the identification of the parameter characterizing the model. The last part of the paper develops a critical analysis also addressed to the design of new traffic flow models.

Cauchy problemMathematical optimizationPartial differential equationSteady stateDifferential equationClosure (topology)Traffic flowComputer Science ApplicationsMicroscopic traffic flow modelModelling and SimulationModeling and SimulationApplied mathematicsBoundary value problemMathematicsMathematical and Computer Modelling
researchProduct

Solution of a cauchy problem for an infinite chain of linear differential equations

2005

Defining the recurrence relations for orthogonal polynomials we have found an exact solution of a Cauchy problem for an infinite chain of linear differential equations with constant coefficients. These solutions have been found both for homogeneous and an inhomogeneous systems.

Cauchy problemMethod of undetermined coefficientsLinear differential equationElliptic partial differential equationHomogeneous differential equationMathematical analysisStatistical and Nonlinear PhysicsCauchy boundary conditiond'Alembert's formulaHyperbolic partial differential equationMathematical PhysicsMathematicsReports on Mathematical Physics
researchProduct

Systèmes hyperboliques d'équations aux dérivées partielles linéaires : régularité et matrices diagonalisables

2001

Resume La regularite des solutions d'un systeme d'equations aux derivees partielles hyperbolique, est liee aux proprietes spectrales d'un faisceaux de matrices reelles. Nous nous interessons ici a la regularite L 2 . Celle ci est obtenue si et seulement si l'exponentielle imaginaire du faisceau est bornee. Nous regardons le lien entre cette condition et les proprietes spectrales du faisceau, ici diagonalisable sur R . Nous donnons en particulier un critere d'exponentielle bornee si les valeurs propres ne sont pas de multiplicites constantes, et nous montrons que dans le cas des faisceaux engendres par deux matrices 3×3, l'exponentielle est bornee si et seulement si le faisceau est analytiqu…

Cauchy problemPure mathematics[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO]010102 general mathematics010103 numerical & computational mathematicsGeneral Medicine0101 mathematics01 natural sciencesHyperbolic partial differential equationComputingMilieux_MISCELLANEOUSMathematics
researchProduct