Search results for "Differential equations"

showing 10 items of 169 documents

Mean square rate of convergence for random walk approximation of forward-backward SDEs

2020

AbstractLet (Y,Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk$B^n$from the underlying Brownian motionBby Skorokhod embedding, one can show$L_2$-convergence of the corresponding solutions$(Y^n,Z^n)$to$(Y, Z).$We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in$C^{2,\alpha}$. The proof relies on an approximative representation of$Z^n$and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to t…

Statistics and ProbabilityDiscretizationapproximation schemeMalliavin calculus01 natural sciences010104 statistics & probabilityconvergence rateMathematics::ProbabilityConvergence (routing)random walk approximation 2010 Mathematics Subject Classification: Primary 60H10FOS: MathematicsApplied mathematics0101 mathematicsBrownian motionrandom walk approximationMathematicsstokastiset prosessitSmoothness (probability theory)konvergenssiApplied Mathematics010102 general mathematicsProbability (math.PR)Backward stochastic differential equationsFunction (mathematics)Random walkfinite difference equation[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Rate of convergencebackward stochastic differential equations60G50 Secondary 60H3060H35approksimointidifferentiaaliyhtälötMathematics - Probability
researchProduct

Wardowski conditions to the coincidence problem

2015

In this article we first discuss the existence and uniqueness of a solution for the coincidence problem: Find p ∈ X such that Tp = Sp, where X is a nonempty set, Y is a complete metric space, and T, S:X → Y are two mappings satisfying a Wardowski type condition of contractivity. Later on, we will state the convergence of the Picard-Juncgk iteration process to the above coincidence problem as well as a rate of convergence for this iteration scheme. Finally, we shall apply our results to study the existence and uniqueness of a solution as well as the convergence of the Picard-Juncgk iteration process toward the solution of a second order differential equation. Ministerio de Economía y Competi…

Statistics and ProbabilityIterative methodsIterative methodCoincidence pointsComplete metric space54H25common fixed pointsConvergence (routing)Applied mathematicsUniquenessMathematicsApplied Mathematics and Statistics47J25lcsh:T57-57.97Applied MathematicsMathematical analysisOrder (ring theory)State (functional analysis)Rate of convergencecoincidence pointsRate of convergenceordinary differential equationsOrdinary differential equationlcsh:Applied mathematics. Quantitative methodsCommon fixed pointsiterative methodslcsh:Probabilities. Mathematical statisticslcsh:QA273-280rate of convergenceFrontiers in Applied Mathematics and Statistics
researchProduct

Infinite rate mutually catalytic branching in infinitely many colonies: The longtime behavior

2012

Consider the infinite rate mutually catalytic branching process (IMUB) constructed in [Infinite rate mutually catalytic branching in infinitely many colonies. Construction, characterization and convergence (2008) Preprint] and [Ann. Probab. 38 (2010) 479-497]. For finite initial conditions, we show that only one type survives in the long run if the interaction kernel is recurrent. On the other hand, under a slightly stronger condition than transience, we show that both types can coexist.

Statistics and ProbabilityPure mathematicsProbability (math.PR)coexistenceType (model theory)Characterization (mathematics)Branching (polymer chemistry)Trotter productstochastic differential equationsLévy noisesegregation of typesStochastic differential equationKernel (algebra)Mutually catalytic branching60G1760K35Convergence (routing)FOS: Mathematics60J6560J55PreprintStatistics Probability and UncertaintyMathematics - ProbabilityMathematicsBranching processThe Annals of Probability
researchProduct

Quantitative ergodicity for some switched dynamical systems

2012

International audience; We provide quantitative bounds for the long time behavior of a class of Piecewise Deterministic Markov Processes with state space Rd × E where E is a finite set. The continuous component evolves according to a smooth vector field that switches at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Under regularity assumptions on the jump rates and stability conditions for the vector fields we provide explicit exponential upper bounds for the convergence to equilibrium in terms of Wasserstein distances. As an example, we obtain convergence results for a stochastic version of the Morris-Lecar model of neurobiology.

Statistics and ProbabilitySwitched dynamical systemsDynamical systems theoryMarkov process01 natural sciences34D2393E15010104 statistics & probabilitysymbols.namesakeCouplingPiecewise Deterministic Markov ProcessPosition (vector)60J25FOS: MathematicsState spaceApplied mathematicsWasserstein distance0101 mathematicsMathematicsProbability (math.PR)010102 general mathematicsErgodicityErgodicity[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Linear Differential EquationsPiecewisesymbolsJumpAMS-MSC. 60J75; 60J25; 93E15; 34D23Vector fieldStatistics Probability and Uncertainty60J75[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability
researchProduct

Simulation of BSDEs with jumps by Wiener Chaos Expansion

2016

International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.

Statistics and ProbabilityWiener Chaos expansionDiscretizationMonte Carlo methodTime stepConditional expectation01 natural sciences010104 statistics & probabilitybackward stochastic differential equations with jumpsFOS: MathematicsApplied mathematics60H10 60J75 60H35 65C05 65G99 60H070101 mathematicsMathematicsPolynomial chaosApplied MathematicsNumerical analysis010102 general mathematicsMathematical analysista111Probability (math.PR)numerical methodCHAOS (operating system)[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationScheme (mathematics)Mathematics - Probability
researchProduct

Donsker-Type Theorem for BSDEs: Rate of Convergence

2019

In this paper, we study in the Markovian case the rate of convergence in Wasserstein distance when the solution to a BSDE is approximated by a solution to a BSDE driven by a scaled random walk as introduced in Briand, Delyon and Mémin (Electron. Commun. Probab. 6 (2001) Art. ID 1). This is related to the approximation of solutions to semilinear second order parabolic PDEs by solutions to their associated finite difference schemes and the speed of convergence. peerReviewed

Statistics and Probability[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Markov processType (model theory)scaled random walk01 natural sciencesconvergence rate010104 statistics & probabilitysymbols.namesakeMathematics::ProbabilityConvergence (routing)FOS: MathematicsOrder (group theory)Applied mathematicsWasserstein distance0101 mathematicsDonsker's theoremstokastiset prosessitMathematicskonvergenssiProbability (math.PR)010102 general mathematicsFinite differenceRandom walk[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Rate of convergencebackward stochastic differential equationssymbolsapproksimointiDonsker’s theoremfinite difference schemedifferentiaaliyhtälötMathematics - Probability
researchProduct

Random walk approximation of BSDEs with H{\"o}lder continuous terminal condition

2018

In this paper, we consider the random walk approximation of the solution of a Markovian BSDE whose terminal condition is a locally Hölder continuous function of the Brownian motion. We state the rate of the L2-convergence of the approximated solution to the true one. The proof relies in part on growth and smoothness properties of the solution u of the associated PDE. Here we improve existing results by showing some properties of the second derivative of u in space. peerReviewed

Statistics and Probabilitynumerical schemeHölder conditionSpace (mathematics)01 natural sciences010104 statistics & probabilityMathematics::Probability0101 mathematicsBrownian motionrandom walk approximationSecond derivativeMathematicsstokastiset prosessitSmoothness (probability theory)numeeriset menetelmät010102 general mathematicsMathematical analysisSpeed of convergenceBackward stochastic differential equationsFunction (mathematics)State (functional analysis)Random walk[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]random walk approxi-mationbackward stochastic differential equationsspeed of convergencespeed of convergence MSC codes : 65C30 60H35 60G50 65G99Mathematics - Probability
researchProduct

Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics

2013

In this paper, by using a stochastic reaction-diffusion-taxis model, we analyze the picophytoplankton dynamics in the basin of the Mediterranean Sea, characterized by poorly mixed waters. The model includes intraspecific competition of picophytoplankton for light and nutrients. The multiplicative noise sources present in the model account for random fluctuations of environmental variables. Phytoplankton distributions obtained from the model show a good agreement with experimental data sampled in two different sites of the Sicily Channel. The results could be extended to analyze data collected in different sites of the Mediterranean Sea and to devise predictive models for phytoplankton dynam…

Stochastic modellingFOS: Physical sciencesStructural basinBiologyRandom processe01 natural sciencesIntraspecific competitionMediterranean sea0103 physical sciencesPhytoplanktonMarine ecosystemSpatial ecologyMarine ecosystem14. Life underwaterQuantitative Biology - Populations and Evolution010306 general physicsPhytoplankton dynamic010301 acousticsEcology Evolution Behavior and SystematicsDeep chlorophyll maximumEcologyEcological ModelingPopulations and Evolution (q-bio.PE)Spatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Oceanography13. Climate actionPhysics - Data Analysis Statistics and ProbabilityFOS: Biological sciencesSpatial ecologyStochastic differential equationsDeep chlorophyll maximumData Analysis Statistics and Probability (physics.data-an)
researchProduct

Modeling of Sensory Characteristics Based on the Growth of Food Spoilage Bacteria

2016

During last years theoretical works shed new light and proposed new hypothesis on the mechanisms which regulate the time behaviour of biological populations in different natural systems. Despite of this, the role of environmental variables in ecological systems is still an open question. Filling this gap of knowledge is a crucial task for a deeper comprehension of the dynamics of biological populations in real ecosystems. In this work we study how the dynamics of food spoilage bacteria influences the sensory characteristics of fresh fish specimens. This topic is crucial for a better understanding of the role played by the bacterial growth on the organoleptic properties, and for the quality …

Stochastic ordinary differential equationmedia_common.quotation_subjectFood spoilageOrganolepticFOS: Physical sciencesSensory systemContext (language use)BiologyPopulation dynamic01 natural sciencesSensory analysisPopulation dynamics; Predictive microbiology; Stochastic ordinary differential equations; Modeling and Simulation010305 fluids & plasmas0103 physical sciencesStatisticsQuality (business)010306 general physicsQuantitative Biology - Populations and EvolutionCondensed Matter - Statistical Mechanicsmedia_commonPredictive microbiologyStatistical Mechanics (cond-mat.stat-mech)EcologyApplied MathematicsPopulations and Evolution (q-bio.PE)Experimental dataSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Modeling and SimulationFOS: Biological sciencesPredictive microbiology
researchProduct

Mean-field games and two-point boundary value problems

2014

A large population of agents seeking to regulate their state to values characterized by a low density is considered. The problem is posed as a mean-field game, for which solutions depend on two partial differential equations, namely the Hamilton-Jacobi-Bellman equation and the Fokker-Plank-Kolmogorov equation. The case in which the distribution of agents is a sum of polynomials and the value function is quadratic is considered. It is shown that a set of ordinary differential equations, with two-point boundary value conditions, can be solved in place of the more complicated partial differential equations associated with the problem. The theory is illustrated by a numerical example.

Stochastic partial differential equationDifferential equationMathematical analysisFree boundary problemFirst-order partial differential equationBoundary value problemHyperbolic partial differential equationNumerical partial differential equationsSeparable partial differential equationMathematics53rd IEEE Conference on Decision and Control
researchProduct