6533b856fe1ef96bd12b28d5

RESEARCH PRODUCT

Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics

Salvatore AronicaG. DenaroGualtiero BasiloneChristophe BrunetBernardo SpagnoloA. La CognataSalvatore MazzolaDavide ValentiAngelo BonannoS. Zgozi

subject

Stochastic modellingFOS: Physical sciencesStructural basinBiologyRandom processe01 natural sciencesIntraspecific competitionMediterranean sea0103 physical sciencesPhytoplanktonMarine ecosystemSpatial ecologyMarine ecosystem14. Life underwaterQuantitative Biology - Populations and Evolution010306 general physicsPhytoplankton dynamic010301 acousticsEcology Evolution Behavior and SystematicsDeep chlorophyll maximumEcologyEcological ModelingPopulations and Evolution (q-bio.PE)Spatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Oceanography13. Climate actionPhysics - Data Analysis Statistics and ProbabilityFOS: Biological sciencesSpatial ecologyStochastic differential equationsDeep chlorophyll maximumData Analysis Statistics and Probability (physics.data-an)

description

In this paper, by using a stochastic reaction-diffusion-taxis model, we analyze the picophytoplankton dynamics in the basin of the Mediterranean Sea, characterized by poorly mixed waters. The model includes intraspecific competition of picophytoplankton for light and nutrients. The multiplicative noise sources present in the model account for random fluctuations of environmental variables. Phytoplankton distributions obtained from the model show a good agreement with experimental data sampled in two different sites of the Sicily Channel. The results could be extended to analyze data collected in different sites of the Mediterranean Sea and to devise predictive models for phytoplankton dynamics in oligotrophic waters.

10.1016/j.ecocom.2012.10.002http://hdl.handle.net/10447/74725