Search results for "Differential equations"
showing 10 items of 169 documents
Oscillation criteria for even-order neutral differential equations
2016
Abstract We study oscillatory behavior of solutions to a class of even-order neutral differential equations relating oscillation of higher-order equations to that of a pair of associated first-order delay differential equations. As illustrated with two examples in the final part of the paper, our criteria improve a number of related results reported in the literature.
On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations
2016
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
Modelling the dynamics of the students’ academic performance in the German region of the North Rhine-Westphalia: an epidemiological approach with unc…
2013
Student academic underachievement is a concern of paramount importance in Europe, where around 15% of the students in the last high school courses do not achieve the minimum knowledge academic requirement. In this paper, we propose a model based on a system of differential equations to study the dynamics of the students academic performance in the German region of North Rhine-Westphalia. This approach is supported by the idea that both, good and bad study habits, are a mixture of personal decisions and influence of classmates. This model allows us to forecast the student academic performance by means of confidence intervals over the next few years.
Qualitative Analysis of Differential, Difference Equations, and Dynamic Equations on Time Scales
2015
and Applied Analysis 3 thank Guest Editors Josef Dibĺik, Alexander Domoshnitsky, Yuriy V. Rogovchenko, Felix Sadyrbaev, and Qi-Ru Wang for their unfailing support with editorial work that ensured timely preparation of this special edition. Tongxing Li Josef Dibĺik Alexander Domoshnitsky Yuriy V. Rogovchenko Felix Sadyrbaev Qi-Ru Wang
Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD
2016
The Relativistic Resistive Magnetohydrodynamic (RRMHD) equations are a hyperbolic system of partial differential equations used to describe the dynamics of relativistic magnetized fluids with a finite conductivity. Close to the ideal magnetohydrodynamic regime, the source term proportional to the conductivity becomes potentially stiff and cannot be handled with standard explicit time integration methods. We propose a new class of methods to deal with the stiffness fo the system, which we name Minimally Implicit Runge-Kutta methods. These methods avoid the development of numerical instabilities without increasing the computational costs in comparison with explicit methods, need no iterative …
Quadratic backward stochastic differential equations
2017
Tässä tutkielmassa analysoimme takaperoisia stokastisia differentiaaliyhtälöitä. Aloitamme esittelemällä stokastiset prosessit, Brownin liikkeen, stokastiset integraalit ja Itôn kaavan. Tämän jälkeen siirrymme tarkastelemaan stokastisia differentiaaliyhtälöitä ja lopulta takaperoisia stokastisia differentiaaliyhtälöitä. Tämän tutkielman pääaiheena on takaperoiset stokastiset differentiaaliyhtälöt kvadraattisilla oletuksilla. Näillä oletuksilla todistamme olemassaoloteoreeman ja tietyt säännöllisyysehdot takaperoisen stokastisen differentiaaliyhtälön ratkaisulle. In this thesis, we analyze backward stochastic differential equations. We begin by introducing stochastic processes, Brownian moti…
Integration of a Dirac comb and the Bernoulli polynomials
2016
Abstract For any positive integer n , we consider the ordinary differential equations of the form y ( n ) = 1 − Ш + F where Ш denotes the Dirac comb distribution and F is a piecewise- C ∞ periodic function with null average integral. We prove the existence and uniqueness of periodic solutions of maximal regularity. Above all, these solutions are given by means of finite explicit formulae involving a minimal number of Bernoulli polynomials. We generalize this approach to a larger class of differential equations for which the computation of periodic solutions is also sharp, finite and effective.
How diffusivity, thermocline and incident light intensity modulate the dynamics of Deep Chlorophyll Maximum in Tyrrhenian Sea
2015
During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time- dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environm…
Spatio-temporal dynamics of a planktonic system and chlorophyll distribution in a 2D spatial domain: matching model and data
2017
AbstractField data on chlorophyll distribution are investigated in a two-dimensional spatial domain of the Mediterranean Sea by using for phytoplankton abundances an advection-diffusion-reaction model, which includes real values for physical and biological variables. The study exploits indeed hydrological and nutrients data acquired in situ, and includes intraspecific competition for limiting factors, i.e. light intensity and phosphate concentration. As a result, the model allows to analyze how both the velocity field of marine currents and the two components of turbulent diffusivity affect the spatial distributions of phytoplankton abundances in the Modified Atlantic Water, the upper layer…
Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion …
2013
A stochastic advection-reaction-diffusion model with terms of multiplicative white Gaussian noise, valid for weakly mixed waters, is studied to obtain the vertical stationary spatial distributions of two groups of picophytoplankton, i.e., picoeukaryotes and Prochlorococcus, which account about for 60% of total chlorophyll on average in Mediterranean Sea. By numerically solving the equations of the model, we analyze the one-dimensional spatio-temporal dynamics of the total picophytoplankton biomass and nutrient concentration along the water column at different depths. In particular, we integrate the equations over a time interval long enough, obtaining the steady spatial distributions for th…