Search results for "Differential geometry"

showing 10 items of 462 documents

General conservation law for a class of physics field theories

2019

In this paper we form a general conservation law that unifies a class of physics field theories. For this we first introduce the notion of a general field as a formal sum differential forms on a Minkowski manifold. Thereafter, we employ the action principle to define the conservation law for such general fields. By construction, particular field notions of physics, such as electric field strength, stress, strain etc. become instances of the general field. Hence, the differential equations that constitute physics field theories become also instances of the general conservation law. Accordingly, the general field and the general conservation law together correspond to a large class of physics…

Mathematics - Differential GeometryDifferential Geometry (math.DG)FOS: MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Mathematical Physics53Z05 58Z05 58J45
researchProduct

Curves with constant curvature ratios

2004

Curves in ${\mathbb R}^n$ for which the ratios between two consecutive curvatures are constant are characterized by the fact that their tangent indicatrix is a geodesic in a flat torus. For $n= 3,4$, spherical curves of this kind are also studied and compared with intrinsic helices in the sphere.

Mathematics - Differential GeometryDifferential Geometry (math.DG)FOS: MathematicsMathematics::Metric GeometryMathematics::Differential GeometryMatemàtica53A04
researchProduct

Boundary reconstruction for the broken ray transform

2013

We reduce boundary determination of an unknown function and its normal derivatives from the (possibly weighted and attenuated) broken ray data to the injectivity of certain geodesic ray transforms on the boundary. For determination of the values of the function itself we obtain the usual geodesic ray transform, but for derivatives this transform has to be weighted by powers of the second fundamental form. The problem studied here is related to Calder\'on's problem with partial data.

Mathematics - Differential GeometryDifferential Geometry (math.DG)GeodesicAstrophysics::High Energy Astrophysical PhenomenaGeneral MathematicsSecond fundamental formta111Mathematical analysisFOS: MathematicsBoundary (topology)Function (mathematics)53C65 78A05 (Primary) 35R30 58J32 (Secondary)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Equivalence of quasiregular mappings on subRiemannian manifolds via the Popp extension

2016

We show that all the common definitions of quasiregular mappings $f\colon M\to N$ between two equiregular subRiemannian manifolds of homogeneous dimension $Q\geq 2$ are quantitatively equivalent with precise dependences of the quasiregularity constants. As an immediate consequence, we obtain that if $f$ is $1$-quasiregular according to one of the definitions, then it is also $1$-quasiregular according to any other definition. In particular, this recovers a recent theorem of Capogna et al. on the equivalence of $1$-quasiconformal mappings. Our main results answer affirmatively a few open questions from the recent research. The main new ingredient in our proofs is the distortion estimates for…

Mathematics - Differential GeometryDifferential Geometry (math.DG)Mathematics::Complex VariablesMathematics - Complex VariablesFOS: MathematicsComplex Variables (math.CV)53C17 30C65 58C06 58C25
researchProduct

Periodic controls in step 2 sub-Finsler problems

2019

We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all linear-in-momenta Casimirs on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.

Mathematics - Differential GeometryDifferential Geometry (math.DG)Optimization and Control (math.OC)FOS: MathematicsMathematics - Optimization and Control
researchProduct

Failure of the local-to-global property for CD(K,N) spaces

2016

Given any K and N we show that there exists a compact geodesic metric measure space satisfying locally the CD(0,4) condition but failing CD(K,N) globally. The space with this property is a suitable non convex subset of R^2 equipped with the l^\infty-norm and the Lebesgue measure. Combining many such spaces gives a (non compact) complete geodesic metric measure space satisfying CD(0,4) locally but failing CD(K,N) globally for every K and N.

Mathematics - Differential GeometryDiscrete mathematicsProperty (philosophy)GeodesicLebesgue measureExistential quantification010102 general mathematicsMetric Geometry (math.MG)Space (mathematics)01 natural sciencesMeasure (mathematics)Theoretical Computer ScienceMathematics (miscellaneous)Mathematics - Metric GeometryDifferential Geometry (math.DG)0103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematics53C23 (Primary) 28A33 49Q20 (Secondary)MathematicsANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
researchProduct

Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below

2013

We prove existence and uniqueness of optimal maps on $RCD^*(K,N)$ spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation.

Mathematics - Differential GeometryExponentiationLower Ricci bounds; Optimal maps; Optimal transport; RCD spaces01 natural sciencesMeasure (mathematics)Combinatoricssymbols.namesakeMathematics - Metric GeometryRCD spacesSettore MAT/05 - Analisi MatematicaFOS: MathematicsOptimal transportMathematics::Metric GeometryUniqueness0101 mathematicsLower Ricci bounds[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]Ricci curvatureMathematicsDiscrete mathematics010102 general mathematicsMetric Geometry (math.MG)Absolute continuity16. Peace & justice010101 applied mathematicsMathematics::LogicDifferential geometryDifferential Geometry (math.DG)Fourier analysisBounded functionsymbolsOptimal mapsGeometry and Topology
researchProduct

Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed

2015

We prove that the bihamiltonian cohomology of a semisimple pencil of Poisson brackets of hydrodynamic type vanishes for almost all degrees. This implies the existence of a full dispersive deformation of a semisimple bihamiltonian structure of hydrodynamic type starting from any infinitesimal deformation.

Mathematics - Differential GeometryFOS: Physical sciencesPoisson distribution01 natural sciencessymbols.namesakePoisson bracketMathematics::Quantum Algebra0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Representation TheoryMathematics::Symplectic GeometryMathematical PhysicsPencil (mathematics)MathematicsAlgebra and Number TheoryNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisInfinitesimal deformationMathematical Physics (math-ph)Cohomology[ MATH.MATH-DG ] Mathematics [math]/Differential Geometry [math.DG]Nonlinear Sciences::Exactly Solvable and Integrable SystemsDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsGeometry and TopologyExactly Solvable and Integrable Systems (nlin.SI)Analysis
researchProduct

Inverse problems for elliptic equations with power type nonlinearities

2021

We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…

Mathematics - Differential GeometryGLOBAL UNIQUENESSGeneral MathematicsConformal mapCALDERON PROBLEMTransversally anisotropic01 natural sciencesinversio-ongelmatMathematics - Analysis of PDEsSimple (abstract algebra)Euclidean geometryFOS: Mathematics111 MathematicsApplied mathematics0101 mathematicsMathematicsInverse boundary value problemosittaisdifferentiaaliyhtälötCalderón problemGeometrical opticsSemilinear equationApplied Mathematics010102 general mathematicstransversally anisotropicInverse problemManifold010101 applied mathematicssemilinear equationNonlinear systemDifferential Geometry (math.DG)inverse boundary value problemLinear equationAnalysis of PDEs (math.AP)Journal de Mathématiques Pures et Appliquées
researchProduct

Counting common perpendicular arcs in negative curvature

2013

Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…

Mathematics - Differential GeometryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]37D40 37A25 53C22 30F4001 natural sciencesDomain (mathematical analysis)Bowen-Margulis measurecommon perpendicularequidistributiondecay of correlation0502 economics and businessortholength spectrummixingAsymptotic formulaSectional curvatureTangent vectorMathematics - Dynamical Systems0101 mathematicsExponential decayskinning measurelaskeminenMathematicsconvexityApplied Mathematicsta111010102 general mathematics05 social sciencesMathematical analysisRegular polygonnegative curvatureRiemannian manifoldGibbs measureManifoldKleinian groups[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]countingMathematics::Differential Geometrygeodesic arc050203 business & management
researchProduct