Search results for "Differential geometry"
showing 10 items of 462 documents
Generalized finite difference schemes with higher order Whitney forms
2021
Finite difference kind of schemes are popular in approximating wave propagation problems in finite dimensional spaces. While Yee’s original paper on the finite difference method is already from the sixties, mathematically there still remains questions which are not yet satisfactorily covered. In this paper, we address two issues of this kind. Firstly, in the literature Yee’s scheme is constructed separately for each particular type of wave problem. Here, we explicitly generalize the Yee scheme to a class of wave problems that covers at large physics field theories. For this we introduce Yee’s scheme for all problems of a class characterised on a Minkowski manifold by (i) a pair of first ord…
Volumes of certain small geodesic balls and almost-Hermitian geometry
1984
Let D be the characteristic connection of an almost-Hermitian manifold, V D m (r) the volume of a small geodesic ball for the connection D and C C D 1 the first non-trivial term of the Taylor expansion of V D m (r). NK-manifolds are characterized in terms of C C D 1 and a family of Hermitian manifolds for which ∫ M C C D 1 dvol is a spectral invariant is given and one proves that C C D 1 and the spectrum of the complex Laplacian, together, determine the class in which a compact Hermitian manifold lines.
On a-semiaffine planes with invisible lines
1987
Translationsstrukturen, die weder axial noch zentral sind
1979
A topological obstruction to the geodesibility of a foliation of odd dimension
1981
Let M be a compact Riemannian manifold of dimension n, and let ℱ be a smooth foliation on M. A topological obstruction is obtained, similar to results of R. Bott and J. Pasternack, to the existence of a metric on M for which ℱ is totally geodesic. In this case, necessarily that portion of the Pontryagin algebra of the subbundle ℱ must vanish in degree n if ℱ is odd-dimensional. Using the same methods simple proofs of the theorems of Bott and Pasternack are given.
A Weitzenböck formula for the damped Ornstein–Uhlenbeck operator in adapted differential geometry
2001
Abstract On the Riemannian path space we consider the Ornstein–Uhlenbeck operator associated to the Dirichlet form E (f,g)=E〈 ∇ f, ∇ g〉 H , where ∇ is the damped gradient and 〈·,·〉 H the scalar product of the Cameron–Martin space H . We prove a corresponding Weitzenbock formula restricted to adapted vector fileds: the Ricci-tensor is shown to be equal to the identity.
Geometry and analysis of Dirichlet forms (II)
2014
Abstract Given a regular, strongly local Dirichlet form E , under assumption that the lower bound of the Ricci curvature of Bakry–Emery, the local doubling and local Poincare inequalities are satisfied, we obtain that: (i) the intrinsic differential and distance structures of E coincide; (ii) the Cheeger energy functional Ch d E is a quadratic norm. This shows that (ii) is necessary for the Riemannian Ricci curvature defined by Ambrosio–Gigli–Savare to be bounded from below. This together with some recent results of Ambrosio–Gigli–Savare yields that the heat flow gives a gradient flow of Boltzman–Shannon entropy under the above assumptions. We also obtain an improvement on Kuwada's duality …
Some fixed point theorems for generalized contractive mappings in complete metric spaces
2015
We introduce new concepts of generalized contractive and generalized alpha-Suzuki type contractive mappings. Then, we obtain sufficient conditions for the existence of a fixed point of these classes of mappings on complete metric spaces and b-complete b-metric spaces. Our results extend the theorems of Ciric, Chatterjea, Kannan and Reich.
Further generalization of fixed point theorems in Menger PM-spaces
2015
In this work, we establish some fixed point theorems by revisiting the notion of ψ-contractive mapping in Menger PM-spaces. One of our results (namely, Theorem 2.3) may be viewed as a possible answer to the problem of existence of a fixed point for generalized type contractive mappings in M-complete Menger PM-spaces under arbitrary t-norm. Some examples are furnished to demonstrate the validity of the obtained results.
Projective mappings between projective lattice geometries
1995
The concept of projective lattice geometry generalizes the classical synthetic concept of projective geometry, including projective geometry of modules.