Search results for "Differential"
showing 10 items of 6566 documents
Differential effects of perceptions of equal, favourable and unfavourable autonomy support on educational and well-being outcomes
2019
Abstract In this study, we examined whether high-school students experienced optimal educational and well-being outcomes when they perceived that they and their classmates received an equal, rather than unequal, and high amount of autonomy support from teachers. In a prospective study that aimed to predict academic grades and well-being outcomes, surface analyses of polynomial regression equations pointed that perceptions of equal autonomy support were the most optimal in terms of yielding highest levels of need satisfaction, autonomous forms of motivation and happiness with math courses. Additionally, in accordance with tenets of self-determination theory, we demonstrated that effects asso…
Simple memetic computing structures for global optimization
2014
Quantitative Approximation Properties for the Fractional Heat Equation
2017
In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain \emph{qualitative} approximation results from \cite{DSV16}. Using propagation of smallness arguments, we then provide bounds on the \emph{cost} of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss genera…
Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian
2018
We show that viscosity solutions to the normalized $p(x)$-Laplace equation coincide with distributional weak solutions to the strong $p(x)$-Laplace equation when $p$ is Lipschitz and $\inf p>1$. This yields $C^{1,\alpha}$ regularity for the viscosity solutions of the normalized $p(x)$-Laplace equation. As an additional application, we prove a Rad\'o-type removability theorem.
On the local and global regularity of tug-of-war games
2018
This thesis studies local and global regularity properties of a stochastic two-player zero-sum game called tug-of-war. In particular, we study value functions of the game locally as well as globally, that is, close to the boundaries of the game domains. Furthermore, we formulate a continuous time stochastic differential game and discuss, among other things, the equicontinuity of the families of value functions. The main motivation is to understand the properties of the games on their own right. As applications, we obtain an existence and a regularity result for a nonlinear elliptic p-Laplace type partial differential equation and a characterization of the solution to a parabolic p-Laplace typ…
An evolutionary Haar-Rado type theorem
2021
AbstractIn this paper, we study variational solutions to parabolic equations of the type $$\partial _t u - \mathrm {div}_x (D_\xi f(Du)) + D_ug(x,u) = 0$$ ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values $$u_0$$ u 0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values $$u_0$$ u 0 admit a modulus of continuity $$\omega $$ ω and the estimate $$|u(x,t)-u_0(\gamma )| \le \omega (|x-\gamma |)$$ | u ( x , t ) - u 0 ( γ ) | ≤ ω ( | x - γ | ) holds, then u admits the same modulus of continuity in the spatial variable.
Gradient walks and $p$-harmonic functions
2017
A sharp stability estimate for tensor tomography in non-positive curvature
2021
Funder: University of Cambridge
Nonlinear Liouville Problems in a Quarter Plane
2016
We answer affirmatively the open problem proposed by Cabr\'e and Tan in their paper "Positive solutions of nonlinear problems involving the square root of the Laplacian" (see Adv. Math. {\bf 224} (2010), no. 5, 2052-2093).
Whitney forms and their extensions
2021
Whitney forms are widely known as finite elements for differential forms. Whitney’s original definition yields first order functions on simplicial complexes, and a lot of research has been devoted to extending the definition to nonsimplicial cells and higher order functions. As a result, the term Whitney forms has become somewhat ambiguous in the literature. Our aim here is to clarify the concept of Whitney forms and explicitly explain their key properties. We discuss Whitney’s initial definition with more depth than usually, giving three equivalent ways to define Whitney forms. We give a comprehensive exposition of their main properties, including the proofs. Understanding of these propert…