Search results for "Dilaton"
showing 8 items of 38 documents
Self-accelerating solutions of scalar-tensor gravity
2007
Scalar-tensor gravity is the simplest and best understood modification of general relativity, consisting of a real scalar field coupled directly to the Ricci scalar curvature. Models of this type have self-accelerating solutions. In an example inspired by string dilaton couplings, scalar-tensor gravity coupled to ordinary matter exhibits a de Sitter type expansion, even in the presence of a {\it negative} cosmological constant whose magnitude exceeds that of the matter density. This unusual behavior does not require phantoms, ghosts or other exotic sources. More generally, we show that any expansion history can be interpreted as arising partly or entirely from scalar-tensor gravity. To dist…
Critical energy flux and mass in solvable theories of 2D dilaton gravity
1998
In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass $m_{cr}$ (eventually vanishing). In others there is neither $m_{cr}$ nor a critical flux.
Detecting gravitational waves from cosmological phase transitions with LISA: an update
2020
MC was funded by the Royal Society under the Newton International Fellowship program. GD would like to thank CNPq (Brazil) for financial support. MH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1), and the Academy of Finland (grant number 286769). SJH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1). The work of JK was supported by Department of Energy (DOE) grant DE-SC0019195 and NSF grant PHY-1719642. TK and GS are funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 \Quantum Universe" - 390833306. JMN is supported by Ramon y Cajal Fellowship contract RYC-2017-22986…
The soliton-soliton interaction in the Chiral Dilaton Model
2012
We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the pi and sigma fields at intermediate distance and should be used for nuclear matter studies. Since the product…
Gravity-mediated dark matter in clockwork/linear dilaton extra-dimensions
2020
We study for the first time the possibility that Dark Matter (represented by particles with spin $0,1/2$ or $1$) interacts gravitationally with Standard Model particles in an extra-dimensional Clockwork/Linear Dilaton model. We assume that both, the Dark Matter and the Standard Model, are localized in the IR-brane and only interact via gravitational mediators, namely the Kaluza-Klein (KK) graviton and the radion/KK-dilaton modes. We analyse in detail the Dark Matter annihilation channel into Standard Model particles and into two on-shell Kaluza-Klein towers (either two KK-gravitons, or two radion/KK-dilatons, or one of each), finding that it is possible to obtain the observed relic abundanc…
Backlund transformations in 2-D dilaton gravity
1998
We give a B\"acklund transformation connecting a generic 2D dilaton gravity theory to a generally covariant free field theory. This transformation provides an explicit canonical transformation relating both theories.
Can conformal Transformations change the fate of 2D black holes?
1998
By using a classical Liouville-type model of two dimensional dilaton gravity we show that the one-loop theory implies that the fate of a black hole depends on the conformal frame. There is one frame for which the evaporation process never stops and another one leading to a complete disappearance of the black hole. This can be seen as a consequence of the fact that thermodynamic variables are not conformally invariant. In the second case the evaporation always produces the same static and regular end-point geometry, irrespective of the initial state.
Constraints on Conformal Windows from Holographic Duals
2009
We analyze a beta function with the analytic form of Novikov-Shifman-Vainshtein-Zakharov result in the five dimensional gravity-dilaton environment. We show how dilaton inherits poles and fixed points of such beta function through the zeros and points of extremum in its potential. Super Yang-Mills and supersymmetric QCD are studied in detail and Seiberg's electric-magnetic duality in the dilaton potential is explicitly demonstrated. Non-supersymmetric proposals of similar functional form are tested and new insights into the conformal window as well as determinations of scheme-independent value of the anomalous dimension at the fixed point are presented.