6533b858fe1ef96bd12b6d4b

RESEARCH PRODUCT

Critical energy flux and mass in solvable theories of 2D dilaton gravity

Alessandro FabbriJosé Navarro-salas

subject

AstrofísicaHigh Energy Physics - TheoryPhysicsGravitacióNuclear and High Energy PhysicsGravity (chemistry)EvaporationFOS: Physical sciencesFluxSemiclassical physicsContext (language use)General Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsCritical massCritical energyDilatonMathematical physics

description

In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass $m_{cr}$ (eventually vanishing). In others there is neither $m_{cr}$ nor a critical flux.

https://doi.org/10.1103/physrevd.58.084011