Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes
We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.
An alternative scenario for critical scalar field collapse in $AdS_3$
In the context of gravitational collapse and black hole formation, we reconsider the problem to describe analytically the critical collapse of a massless and minimally coupled scalar field in $2+1$ gravity.
Quantum Effects in Black Holes from the Schwarzschild Black String?
The holographic conjecture for black holes localized on a 3-brane in Randall-Sundrum braneworld models RS2 predicts the existence of a classical 5D time dependent solution dual to a 4D evaporating black hole. After briefly reviewing recent criticism and presenting some difficulties in the holographic interpretation of the Gregory-Laflamme instability, we simulate some basic features of such a solution by studying null geodesics of the Schwarzschild black string, in particular those propagating nontrivially in the bulk, and using holographic arguments.
Hawking radiation of massive modes and undulations
We compute the analogue Hawking radiation for modes which posses a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This generates an extra mode mixing that occurs in the supersonic region, which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what was recently found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodyn…
Generalized Virasoro anomaly and stress tensor for dilaton coupled theories
We derive the anomalous transformation law of the quantum stress tensor for a 2D massless scalar field coupled to an external dilaton. This provides a generalization of the Virasoro anomaly which turns out to be consistent with the trace anomaly. We apply it together with the equivalence principle to compute the expectation values of the covariant quantum stress tensor on a curved background. Finally we briefly illustrate how to evaluate vacuum polarization and Hawking radiation effects from these results.
Acoustic white holes in flowing atomic Bose-Einstein condensates
International audience; We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method which includ…
Comment on `Critical scalar field collapse in AdS$_3$: an analytical approach'
We comment on the derivation of an analytical solution presented in arXiv:1309.1629, show that it belongs to a family of separable solutions previously constructed in arXiv:gr-qc/0109002, and question its relevance to critical collapse.
Black hole evaporation in a thermalized final-state projection model
4 pages, 1 figure.-- PACS nrs.: 04.70.Dy; 03.67.-a.-- ISI Article Identifier: 000245333600044.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-th/0611152
Apparent universality of semiclassical gravity in the far field limit
The universality of semiclassical gravity is investigated by considering the behavior of the quantities < ��^2 > and < {T^a}_b >, along with quantum corrections to the effective Newtonian potential in the far field limits of static spherically symmetric objects ranging from stars in the weak field Newtonian limit to black holes. For scalar fields it is shown that when differences occur they all result from the behavior of a single mode with zero frequency and angular momentum and are thus due to a combination of infrared and s-wave effects. An intriguing combination of similarities and differences between the extreme cases of a Schwarzschild black hole and a star in the weak fie…
Particles and energy fluxes from a conformal field theory perspective
We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogoliubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy.
Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensates
This chapter is an introduction to the Bogoliubov theory of dilute Bose condensates as applied to the study of the spontaneous emission of phonons in a stationary condensate flowing at supersonic speeds. This emission process is a condensed-matter analog of Hawking radiation from astrophysical black holes but is derived here from a microscopic quantum theory of the condensate without any use of the analogy with gravitational systems. To facilitate physical understanding of the basic concepts, a simple one-dimensional geometry with a stepwise homogenous flow is considered which allows for a fully analytical treatment.
Testing Hawking particle creation by black holes through correlation measurements
Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.
Low frequency gray-body factors and infrared divergences: rigorous results
Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a 1D Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of …
Normalization of Killing vectors and energy conservation in two-dimensional gravity
We explicitly show that, in the context of a recently proposed 2D dilaton gravity theory, energy conservation requires the ``natural'' Killing vector to have, asymptotically, an unusual normalization. The Hawking temperature $T_H$ is then calculated according to this prescription.
Quantum-corrected rotating black holes and naked singularities in ( 2+1 ) dimensions
We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2+1)-dimensional black holes and naked singularities. In both cases we obtain the quantum-backreacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearan…
Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: exact results
A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate (BEC) acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low frequency limit.
Static quantum corrections to the Schwarzschild spacetime
We study static quantum corrections of the Schwarzschild metric in the Boulware vacuum state. Due to the absence of a complete analytic expression for the full semiclassical Einstein equations we approach the problem by considering the s-wave approximation and solve numerically the associated backreaction equations. The solution, including quantum effects due to pure vacuum polarization, is similar to the classical Schwarzschild solution up to the vicinity of the classical horizon. However, the radial function has a minimum at a time-like surface close to the location of the classical event horizon. There the g_{00} component of the metric reaches a very small but non-zero value. The analys…
Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell
A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…
Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model
Transverse excitations in analogue black holes induce a mass like term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of parallel peaks. For the most part the structure is completely different from that found in the massless case.
Backreaction in Acoustic Black Holes
The backreaction equations for the linearized quantum fluctuations in an acoustic black hole are given. The solution near the horizon, obtained within a dimensional reduction, indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstrom black holes.
Evaporation of Near-Extremal Reissner-Nordström Black Holes
The formation of near-extremal Reissner-Nordstrom black holes in the S-wave approximation can be described, near the event horizon, by an effective solvable model. The corresponding one-loop quantum theory remains solvable and allows to follow analytically the evaporation process which is shown to require an infinite amount of time.
Low-energy scattering of extremal black holes by neutral matter
We investigate the decay of a spherically symmetric near-extremal charged black hole, including back-reaction effects, in the near-horizon region. The non-locality of the effective action controlling this process allows and also forces us to introduce a complementary set of boundary conditions which permit to determine the asymptotic late time Hawking flux. The evaporation rate goes down exponentially and admits an infinite series expansion in Planck's constant. At leading order it is proportional to the total mass and the higher order terms involve higher order momenta of the classical stress-tensor. Moreover we use this late time behaviour to go beyond the near-horizon approximation and c…
Integrable models and degenerate horizons in two-dimensional gravity
We analyse an integrable model of two-dimensional gravity which can be reduced to a pair of Liouville fields in conformal gauge. Its general solution represents a pair of ``mirror'' black holes with the same temperature. The ground state is a degenerate constant dilaton configuration similar to the Nariai solution of the Schwarzschild-de Sitter case. The existence of $\phi=const.$ solutions and their relation with the solution given by the 2D Birkhoff's theorem is then investigated in a more general context. We also point out some interesting features of the semiclassical theory of our model and the similarity with the behaviour of AdS$_2$ black holes.
Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates
We report numerical evidence of Hawking emission of Bogoliubov phonons from a sonic horizon in a flowing one-dimensional atomic Bose-Einstein condensate. The presence of Hawking radiation is revealed from peculiar long-range patterns in the density-density correlation function of the gas. Quantitative agreement between our fully microscopic calculations and the prediction of analog models is obtained in the hydrodynamic limit. New features are predicted and the robustness of the Hawking signal against a finite temperature discussed.
Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography
Motivated by the quest for black holes in AdS braneworlds, and in particular by the holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected ones, we numerically solve the semiclassical Einstein equations (backreaction equations) with matter fields in the (zero temperature) Boulware vacuum state. In the absence of an exact analytical expression for in four dimensions we work within the s-wave approximation. Our results show that the quantum corrected solution is very similar to Schwarzschild till very close to the horizon, but then a bouncing surface for the radial function appears which prevents the formation of an event horizon. We also analyze the behavior of…
Brane cosmology with an anisotropic bulk
In the context of brane cosmology, a scenario where our universe is a 3+1-dimensional surface (the ``brane'') embedded in a five-dimensional spacetime (the ``bulk''), we study geometries for which the brane is anisotropic - more specifically Bianchi I - though still homogeneous. We first obtain explicit vacuum bulk solutions with anisotropic three-dimensional spatial slices. The bulk is assumed to be empty but endowed with a negative cosmological constant. We then embed Z_2-symmetric branes in the anisotropic spacetimes and discuss the constraints on the brane energy-momentum tensor due to the five-dimensional anisotropic geometry. We show that if the bulk is static, an anisotropic brane ca…
The Holographic Interpretation of Hawking Radiation
Holography gives us a tool to view the Hawking effect from a new, classical perspective. In the context of Randall-Sundrum braneworld models, we show that the basic features of four-dimensional evaporating solutions are nicely translated into classical five-dimensional language. This includes the dual bulk description of particles tunneling through the horizon.
Ramp-up of Hawking radiation in Bose-Einstein condensate analogue black holes
Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical computation of the evolution in time of the corresponding density-density correlator. We show the emergence of analog Hawking radiation out of a "quantum atmosphere" region significantly displaced from the horizon. This is quantitatively studied both at $T=0$ and even in the presence of an initial temperature T, as is always the case experimentally.
Scattering of Co-Current Surface Waves on an Analogue Black Hole
We report on what is to our knowledge the first scattering experiment of surface waves on an accelerating transcritical flow, which in the analogue gravity context is described by an effective spacetime with a black-hole horizon. This spacetime has been probed by an incident co-current wave, which partially scatters into an outgoing countercurrent wave on each side of the horizon. The measured scattering amplitudes are compatible with the predictions of the hydrodynamical theory, where the kinematical description in terms of the effective metric is exact.
A scenario for critical scalar field collapse in $AdS_3$
We present a family of exact solutions, depending on two parameters $\alpha$ and $b$ (related to the scalar field strength), to the three-dimensional Einstein-scalar field equations with negative cosmological constant $\Lambda$. For $b=0$ these solutions reduce to the static BTZ family of vacuum solutions, with mass $M = -\alpha$. For $b\neq0$, the solutions become dynamical and develop a strong spacelike central singularity. The $\alpha0$ agrees qualitatively with that observed in numerical simulations of subcritical collapse. We analyze the linear perturbations of the threshold solution, $\alpha=0$, in the $\Lambda=0$ approximation, and find that it has only one unstable growing mode, whi…
Quantum evolution of near-extremal Reissner-Nordstrom black holes
We study the near-horizon AdS_2\timesS^2 geometry of evaporating near-extremal Reissner-Nordstrom black holes interacting with null matter. The non-local (boundary) terms t_{\pm}, coming from the effective theory corrected with the quantum Polyakov-Liouville action, are treated as dynamical variables. We describe analytically the evaporation process which turns out to be compatible with the third law of thermodynamics, i.e., an infinite amount of time is required for the black hole to decay to extremality. Finally we comment briefly on the implications of our results for the information loss problem.
Critical energy flux and mass in solvable theories of 2D dilaton gravity
In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass $m_{cr}$ (eventually vanishing). In others there is neither $m_{cr}$ nor a critical flux.
Quantum stress tensor for extreme 2D Reissner-Nordström black holes
Contrary to previous claims, it is shown that the expectation values of the quantum stress tensor for a massless scalar field propagating on a two-dimensional extreme Reissner-Nordstrom black hole are indeed regular on the horizon.
EINSTEIN–PLANCK FORMULA, EQUIVALENCE PRINCIPLE, AND BLACK HOLE RADIANCE
The presence of gravity implies corrections to the Einstein-Planck formula $E=h \nu$. This gives hope that the divergent blueshift in frequency, associated to the presence of a black hole horizon, could be smoothed out for the energy. Using simple arguments based on Einstein's equivalence principle we show that this is only possible if a black hole emits, in first approximation, not just a single particle, but thermal radiation.
Depletion in Bose-Einstein condensates using quantum field theory in curved space
5 pages.-- PACS nrs.: 03.75.Kk; 05.30.Jp; 04.62.+v; 04.70.Dy.-- ISI Article Identifier: 000246074600122.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0610367
Late time approach to Hawking radiation: Terms beyond leading order
Black hole evaporation is studied using wave packets for the modes. These allow for approximate frequency and time resolution. The leading order late time behavior gives the well known Hawking radiation that is independent of how the black hole formed. The focus here is on the higher order terms and the rate at which they damp at late times. Some of these terms carry information about how the black hole formed. A general argument is given which shows that the damping is significantly slower (power law) than what might be naively expected from a stationary phase approximation (exponential). This result is verified by numerical calculations in the cases of 2D and 4D black holes that form from…
Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole
The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of $⟨{^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{ext}}\text{ }\text{ }{^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{int}}⟩$, where ${^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{ext}}$ is the annihilation operator for the Hawking particle and ${^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{int}}$ is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC f…
Instability of black holes in massive gravity
We show that linear perturbations around the simplest black hole solution of massive bi-gravity theories, the bi-Schwarzschild solution, exhibit an unstable mode featuring the Gregory-Laflamme instability of higher dimensional black strings. The result is obtained for the massive gravity theory which is free from the Boulware-Deser ghost, as well as for its extension with two dynamical metrics. These results may indicate that static black holes in massive gravity do not exist. For the graviton mass of the order of the Hubble scale, however, the instability timescale is of order of the Hubble time.
Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space
The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.
QUANTUM EFFECTS IN ACOUSTIC BLACK HOLES: THE BACKREACTION.
We investigate the backreaction equations for an acoustic black hole formed in a Laval nozzle under the assumption that the motion of the fluid is one-dimensional. The solution in the near-horizon region shows that as phonons are (thermally) radiated the sonic horizon shrinks and the temperature decreases. This contrasts with the behaviour of Schwarzschild black holes, and is similar to what happens in the evaporation of (near-extremal) Reissner-Nordstrom black holes (i.e. infinite evaporation time). Finally, by appropriate boundary conditions the solution is extended in both the asymptotic regions of the nozzle.
Late-time correlations in semiclassical particle-black hole scattering
We analyse the quantum corrected geometry and radiation in the scattering of extremal black holes by low-energy neutral matter. We point out the fact that the correlators of local observables inside the horizon are the same as those of the vacuum. Outside the horizon the correlators at late times are much bigger than those of the (thermal) case obtained neglecting the backreaction. This suggests that the corrected Hawking radiation could be compatible with unitarity.
Stability analysis of black holes in massive gravity: a unified treatment
We consider the analytic solutions of massive (bi)gravity which can be written in a simple form using advanced Eddington-Finkelstein coordinates. We analyse the stability of these solutions against radial perturbations. First we recover the previously obtained result on the instability of the bidiagonal bi-Schwarzschild solutions. In the non-bidiagonal case (which contains, in particular, the Schwarzschild solution with Minkowski fiducial metric) we show that generically there are physical spherically symmetric perturbations, but no unstable modes.
Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities
We analytically investigate backreaction by a quantum scalar field on two rotating Ba\~nados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we f…
Particle production in the interiors of acoustic black holes
Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This non-thermality is due to the anomalous scattering that occurs in the interior regions.
Can conformal Transformations change the fate of 2D black holes?
By using a classical Liouville-type model of two dimensional dilaton gravity we show that the one-loop theory implies that the fate of a black hole depends on the conformal frame. There is one frame for which the evaporation process never stops and another one leading to a complete disappearance of the black hole. This can be seen as a consequence of the fact that thermodynamic variables are not conformally invariant. In the second case the evaporation always produces the same static and regular end-point geometry, irrespective of the initial state.
Mecànica II
El document forma part dels materials docents programats mitjançant l'ajut del Servei de Política Lingüística de la Universitat de València Apunts de l'assignatura de Mecànica II, amb tres temaris principals: Formulació Lagrangiana (part 1), Formulació Hamiltoniana (part 2) i Relativitat Especial (part 3). Notes of the course 'Mecànica II', with three main topics: Lagrangian formulation (part 1), Hamiltonian formulation (part 2) and Special Relativity (part 3).