6533b821fe1ef96bd127c323
RESEARCH PRODUCT
Low frequency gray-body factors and infrared divergences: rigorous results
Roberto BalbinotPaul R. AndersonAlessandro Fabbrisubject
High Energy Physics - TheoryPhysicsCondensed Matter::Quantum GasesNuclear and High Energy PhysicsAngular momentumQuantum field theory in curved spacetimeHawking radiation black body factorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Volterra integral equationGeneral Relativity and Quantum CosmologyBlack holesymbols.namesakeGeneral Relativity and Quantum Cosmologyde Sitter–Schwarzschild metricRotating black holeHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamicsExtremal black holesymbolsCondensed Matter - Quantum GasesScalar fielddescription
Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a 1D Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of the symmetric two-point function and two functions derived from it: the point-split stress-energy tensor for the massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime and the density-density correlation function for a Bose-Einstein condensate acoustic black hole.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-08 |