0000000000006062

AUTHOR

Roberto Balbinot

0000-0003-2741-699x

showing 20 related works from this author

Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes

2008

We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.

PhysicsCondensed Matter::Quantum GasesBOSONSSonic black holeQuantum field theory in curved spacetimePhononAtomic and Molecular Physics and OpticsBlack holeGravitationCorrelation function (statistical mechanics)General Relativity and Quantum CosmologyHIERARCHYQuantum mechanicsQuantum electrodynamicsANALOGOUTPUT COUPLERSignature (topology)ATOM LASERHawking radiation
researchProduct

Hawking radiation of massive modes and undulations

2012

We compute the analogue Hawking radiation for modes which posses a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This generates an extra mode mixing that occurs in the supersonic region, which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what was recently found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodyn…

High Energy Physics - TheoryNuclear and High Energy PhysicsHAWKING RADIATIONWhite holeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyMicro black holeGeneral Relativity and Quantum CosmologyQuantum mechanics0103 physical sciencesExtremal black holeWave vectormassive modes010306 general physicsPhysics010308 nuclear & particles physicsBlack holeInfrared divergenceHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamicsReflection (physics)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesHawking radiation
researchProduct

Acoustic white holes in flowing atomic Bose-Einstein condensates

2010

International audience; We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method which includ…

High Energy Physics - Theory[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]PhononWhite holeGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmaslaw.inventionGeneral Relativity and Quantum CosmologyCorrelation functionlaw0103 physical sciences010306 general physicsSUPERFLOWBLACK-HOLESQuantum fluctuationPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]HorizonMean field theoryHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamics[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesBose–Einstein condensateHawking radiation
researchProduct

Matter, quantum gravity, and adiabatic phase

1990

Based on the observation that particle masses are much smaller than the Planck mass, a framework for the matter-gravity system in which matter follows gravitation adiabatically is examined in a path-integral approach. It is found that the equations that the resulting gravitational wave function satisfies involve, in addition to the expectation value of the matter stress tensor, an adiabatically induced gauge field which can lead to interesting topological structures in superspace. Such a non-trivial geometric contribution modifies the semiclassical quantization condition and can change the conserved quantities associated with the symmetries of the system. © 1990 The American Physical Societ…

GravitationPhysicsQuantization (physics)Classical mechanicsQuantum theoryAdiabatic phaseEinstein field equationsPlanck massSemiclassical physicsQuantum gravityGauge theoryQuantum field theoryGravitationPhysical Review D
researchProduct

Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensates

2013

This chapter is an introduction to the Bogoliubov theory of dilute Bose condensates as applied to the study of the spontaneous emission of phonons in a stationary condensate flowing at supersonic speeds. This emission process is a condensed-matter analog of Hawking radiation from astrophysical black holes but is derived here from a microscopic quantum theory of the condensate without any use of the analogy with gravitational systems. To facilitate physical understanding of the basic concepts, a simple one-dimensional geometry with a stepwise homogenous flow is considered which allows for a fully analytical treatment.

Condensed Matter::Quantum GasesPhysicsHAWKING RADIATIONCondensed Matter::OtherPhononlaw.inventionBlack holeGravitationBogoliubov transformationBOSE EINSTEIN CONDENSATEFlow (mathematics)lawQuantum electrodynamicsSpontaneous emissionBose–Einstein condensateHawking radiation
researchProduct

Testing Hawking particle creation by black holes through correlation measurements

2010

Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.

PhysicsHigh Energy Physics - Theoryanalog modelsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)RADIAZIONE DI HAWKINGCONDENSATI DI BOSE EINSTEINGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyUnruh effectHawkingBECHigh Energy Physics - Theory (hep-th)Space and Planetary ScienceThermal radiationQuantum Gases (cond-mat.quant-gas)Quantum electrodynamicsParticleCondensed Matter - Quantum GasesMathematical Physics
researchProduct

Low frequency gray-body factors and infrared divergences: rigorous results

2015

Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a 1D Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of …

High Energy Physics - TheoryPhysicsCondensed Matter::Quantum GasesNuclear and High Energy PhysicsAngular momentumQuantum field theory in curved spacetimeHawking radiation black body factorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Volterra integral equationGeneral Relativity and Quantum CosmologyBlack holesymbols.namesakeGeneral Relativity and Quantum Cosmologyde Sitter–Schwarzschild metricRotating black holeHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamicsExtremal black holesymbolsCondensed Matter - Quantum GasesScalar field
researchProduct

Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: exact results

2015

A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate (BEC) acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low frequency limit.

PhysicsCondensed Matter::Quantum GasesHigh Energy Physics - TheoryNuclear and High Energy Physicscond-mat.quant-ga010308 nuclear & particles physicsScatteringFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology3. Good healthGeneral Relativity and Quantum CosmologyExact resultsHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamics0103 physical sciencesAcoustic wave equation010306 general physicsCondensed Matter - Quantum Gases
researchProduct

How singular are black hole interiors?

1991

Abstract Ori has recently shown that an astronaut approaching the inner horizon of a black hole is not necessarily torn apart by tidal forces. This raises anew the possibility of astronavigation through black holes, perhaps to other universes. We re-examine this question in the light of hypotheses about probable conditions in the black hole core.

PhysicsGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaWhite holeHorizonGeneral Physics and AstronomyAstrophysicsFuzzballPhysics::GeophysicsBlack holeGeneral Relativity and Quantum Cosmologyde Sitter–Schwarzschild metricNonsingular black hole modelsTidal forcePhysics Letters A
researchProduct

Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model

2018

Transverse excitations in analogue black holes induce a mass like term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of parallel peaks. For the most part the structure is completely different from that found in the massless case.

High Energy Physics - TheorylongitudinalPhononOne-dimensional spacetoy modelFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyLongitudinal modeGeneral Relativity and Quantum CosmologyQuantum mechanics0103 physical sciencesexcited stateMassive phonons Hawking radiationcorrelation functionstructure010306 general physicsdimension: 2PhysicsToy model010308 nuclear & particles physicsMassless particleCorrelation function (statistical mechanics)Transverse planetransverseblack hole: acousticHigh Energy Physics - Theory (hep-th)General relativityQuantum Gases (cond-mat.quant-gas)correlation[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]phonon: massiveCondensed Matter - Quantum GasesHawking radiation
researchProduct

Backreaction in Acoustic Black Holes

2005

The backreaction equations for the linearized quantum fluctuations in an acoustic black hole are given. The solution near the horizon, obtained within a dimensional reduction, indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstrom black holes.

High Energy Physics - TheoryPhysicsACOUSTIC BLACK HOLESonic black holeAstrophysics::High Energy Astrophysical PhenomenaWhite holeBACK REACTIONFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)FLUCTUATIONSFuzzballGeneral Relativity and Quantum CosmologyCondensed Matter - Other Condensed MatterBlack holeGeneral Relativity and Quantum CosmologyMicro black holeHigh Energy Physics - Theory (hep-th)Binary black holeQuantum mechanicsSchwarzschild radiusOther Condensed Matter (cond-mat.other)Hawking radiationPhysical Review Letters
researchProduct

Quantum bubble dynamics in the presence of gravity

1991

Abstract The dynamics of spherical quantum bubbles in 3+1 dimensions is governed by a Klein-Gordon-type equation which simulates the quantum mechanical motion of a relativistic point particle in 1+1 dimensions. This dimensional reduction is especially clear in the minisuperspace formulation first used in quantum cosmology and adapted here to quantum bubble dynamics. The payoff of this formulation is the discovery of the gravitational analogue of the Klein effect, namely the crossing of positive and negative energy levels of the particle spectrum induced by an external gravitational field. This phenomenon gives rise to a finite probability that a vacuum bubble might tunnel from an initial bo…

PhysicsNuclear and High Energy PhysicsQuantization (physics)Classical mechanicsString and brane phenomenologyQuantum cosmologyQuantum processQuantum dynamicsQuantum mechanicsQuantum gravityNegative energyQuantum dissipationLoop quantum cosmology
researchProduct

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates

2008

We report numerical evidence of Hawking emission of Bogoliubov phonons from a sonic horizon in a flowing one-dimensional atomic Bose-Einstein condensate. The presence of Hawking radiation is revealed from peculiar long-range patterns in the density-density correlation function of the gas. Quantitative agreement between our fully microscopic calculations and the prediction of analog models is obtained in the hydrodynamic limit. New features are predicted and the robustness of the Hawking signal against a finite temperature discussed.

High Energy Physics - TheoryCondensed Matter::Quantum GasesPhysicsPhononHorizonFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmologylaw.inventionCondensed Matter - Other Condensed MatterGeneral Relativity and Quantum CosmologyCorrelation function (statistical mechanics)HawkingHigh Energy Physics - Theory (hep-th)lawQuantum electrodynamicsBose–Einstein condensateOther Condensed Matter (cond-mat.other)Hawking radiationNew Journal of Physics
researchProduct

Ramp-up of Hawking radiation in Bose-Einstein condensate analogue black holes

2020

Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical computation of the evolution in time of the corresponding density-density correlator. We show the emergence of analog Hawking radiation out of a "quantum atmosphere" region significantly displaced from the horizon. This is quantitatively studied both at $T=0$ and even in the presence of an initial temperature T, as is always the case experimentally.

PhysicsHigh Energy Physics - TheorySIMPLE (dark matter experiment)ComputationFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmologylaw.inventionBlack holeAtmosphereGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)lawQuantum electrodynamics0103 physical sciencesHawking radiation analogue black holes010306 general physicsCondensed Matter - Quantum GasesQuantumBose–Einstein condensateHawking radiation
researchProduct

Quantum stress tensor for extreme 2D Reissner-Nordström black holes

2004

Contrary to previous claims, it is shown that the expectation values of the quantum stress tensor for a massless scalar field propagating on a two-dimensional extreme Reissner-Nordstrom black hole are indeed regular on the horizon.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsBLACK HOLEWhite holeFOS: Physical sciencesREISSNER-NORDSTROEMGeneral Relativity and Quantum Cosmology (gr-qc)FuzzballGeneral Relativity and Quantum CosmologyBlack holeHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyMicro black hole2D ENERGY-MOMENTUM TENSORHigh Energy Physics - Theory (hep-th)HORIZONQuantum mechanicsExtremal black holeFísica nuclearVirtual black holeBlack hole thermodynamicsMathematical physicsHawking radiationPhysical Review D
researchProduct

Depletion in Bose-Einstein condensates using quantum field theory in curved space

2007

5 pages.-- PACS nrs.: 03.75.Kk; 05.30.Jp; 04.62.+v; 04.70.Dy.-- ISI Article Identifier: 000246074600122.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0610367

FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Condensed Matter - Soft Condensed MatterBose-Einstein condensationGeneral Relativity and Quantum Cosmologylaw.inventionRenormalizationBOSE EINSTEIN CONDENSATElawQuantum mechanicsAtomSpace-time configurationsQuantum field theoryCurved spacePhysicsCondensed Matter::Quantum GasesTemperaturesQuantum field theory in curved spacetimeCondensed Matter::OtherBlack holesQuantum gravityQUANTUM FIELD THEORY IN CURVED SPACEAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterQuantum electrodynamicsQuantum gravitySoft Condensed Matter (cond-mat.soft)Bose–Einstein condensateHawking radiationOther Condensed Matter (cond-mat.other)
researchProduct

Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole

2020

The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of $⟨{^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{ext}}\text{ }\text{ }{^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{int}}⟩$, where ${^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{ext}}$ is the annihilation operator for the Hawking particle and ${^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{int}}$ is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC f…

Physics010308 nuclear & particles physicsSignificant differenceCreation and annihilation operatorsCorrelation function (quantum field theory)01 natural scienceslaw.inventionBlack holeGeneral Relativity and Quantum Cosmologysymbols.namesakeFourier transformlaw0103 physical sciencessymbolsParticleProduction (computer science)010306 general physicsBose–Einstein condensateMathematical physicsPhysical Review D
researchProduct

Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space

2013

The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.

High Energy Physics - TheoryNuclear and High Energy PhysicsHAWKING RADIATION[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Black-hole evaporationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCONDENSATI DI BOSE EINSTEINGeneral Relativity and Quantum Cosmologylaw.inventionGravitationGeneral Relativity and Quantum CosmologyCorrelation functionlawQuantum mechanics0103 physical sciencesQuantum field theory010306 general physicsCurved spaceCondensed Matter::Quantum GasesPhysicsQuantum field theory in curved spacetime[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Condensed Matter::Other010308 nuclear & particles physicsBlack holeHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesBose–Einstein condensateAnalog gravityHawking radiationPhysical Review D
researchProduct

QUANTUM EFFECTS IN ACOUSTIC BLACK HOLES: THE BACKREACTION.

2004

We investigate the backreaction equations for an acoustic black hole formed in a Laval nozzle under the assumption that the motion of the fluid is one-dimensional. The solution in the near-horizon region shows that as phonons are (thermally) radiated the sonic horizon shrinks and the temperature decreases. This contrasts with the behaviour of Schwarzschild black holes, and is similar to what happens in the evaporation of (near-extremal) Reissner-Nordstrom black holes (i.e. infinite evaporation time). Finally, by appropriate boundary conditions the solution is extended in both the asymptotic regions of the nozzle.

High Energy Physics - TheoryNuclear and High Energy PhysicsSonic black holeEvent horizonWhite holeAstrophysics::High Energy Astrophysical PhenomenaHAWKINGFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Charged black holeGeneral Relativity and Quantum CosmologyACOUSTICPhysics::Fluid DynamicsMicro black holeGeneral Relativity and Quantum CosmologyQuantum mechanicsPhysicsBLACK HOLEBACK REACTIONFLUIDCondensed Matter - Other Condensed MatterBlack holeHigh Energy Physics - Theory (hep-th)RADIATIONSchwarzschild radiusOther Condensed Matter (cond-mat.other)Hawking radiation
researchProduct

Particle production in the interiors of acoustic black holes

2019

Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This non-thermality is due to the anomalous scattering that occurs in the interior regions.

High Energy Physics - TheoryPhononAstrophysics::High Energy Astrophysical Phenomenatoy modelFOS: Physical sciencesParticle production Black holesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologythermalGeneral Relativity and Quantum Cosmology0103 physical sciencesThermal010306 general physicsPhysicsSIMPLE (dark matter experiment)Condensed matter physicsAnomalous scattering010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]scatteringhorizon: acoustic[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]field theory in curved spaceblack hole: acousticFormal aspects of field theoryHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]ParticleCondensed Matter - Quantum Gasesphonon: production
researchProduct