0000000000149578

AUTHOR

Paul R. Anderson

showing 12 related works from this author

Hawking radiation of massive modes and undulations

2012

We compute the analogue Hawking radiation for modes which posses a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This generates an extra mode mixing that occurs in the supersonic region, which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what was recently found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodyn…

High Energy Physics - TheoryNuclear and High Energy PhysicsHAWKING RADIATIONWhite holeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyMicro black holeGeneral Relativity and Quantum CosmologyQuantum mechanics0103 physical sciencesExtremal black holeWave vectormassive modes010306 general physicsPhysics010308 nuclear & particles physicsBlack holeInfrared divergenceHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamicsReflection (physics)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesHawking radiation
researchProduct

Apparent universality of semiclassical gravity in the far field limit

2006

The universality of semiclassical gravity is investigated by considering the behavior of the quantities < ��^2 > and < {T^a}_b >, along with quantum corrections to the effective Newtonian potential in the far field limits of static spherically symmetric objects ranging from stars in the weak field Newtonian limit to black holes. For scalar fields it is shown that when differences occur they all result from the behavior of a single mode with zero frequency and angular momentum and are thus due to a combination of infrared and s-wave effects. An intriguing combination of similarities and differences between the extreme cases of a Schwarzschild black hole and a star in the weak fie…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsAngular momentumQuantum field theory in curved spacetimeNewtonian potentialFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Newtonian limitGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsSchwarzschild metricSemiclassical gravityQuantum field theory
researchProduct

Cosmological Horizon Modes and Linear Response in de Sitter Spacetime

2009

Linearized fluctuations of quantized matter fields and the spacetime geometry around de Sitter space are considered in the case that the matter fields are conformally invariant. Taking the unperturbed state of the matter to be the de Sitter invariant Bunch-Davies state, the linear variation of the stress tensor about its self-consistent mean value serves as a source for fluctuations in the geometry through the semiclassical Einstein equations. This linear response framework is used to investigate both the importance of quantum backreaction and the validity of the semiclassical approximation in cosmology. The full variation of the stress tensor delta bi contains two kinds of terms: (1) those…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsQuantum field theory in curved spacetimeCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCauchy stress tensorDe Sitter spaceSemiclassical physicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyAuxiliary fieldGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)De Sitter universeQuantum cosmologyQuantum mechanics0103 physical sciencesEinstein field equations010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsMathematical physics
researchProduct

Low frequency gray-body factors and infrared divergences: rigorous results

2015

Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a 1D Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of …

High Energy Physics - TheoryPhysicsCondensed Matter::Quantum GasesNuclear and High Energy PhysicsAngular momentumQuantum field theory in curved spacetimeHawking radiation black body factorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Volterra integral equationGeneral Relativity and Quantum CosmologyBlack holesymbols.namesakeGeneral Relativity and Quantum Cosmologyde Sitter–Schwarzschild metricRotating black holeHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamicsExtremal black holesymbolsCondensed Matter - Quantum GasesScalar field
researchProduct

Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: exact results

2015

A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate (BEC) acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low frequency limit.

PhysicsCondensed Matter::Quantum GasesHigh Energy Physics - TheoryNuclear and High Energy Physicscond-mat.quant-ga010308 nuclear & particles physicsScatteringFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology3. Good healthGeneral Relativity and Quantum CosmologyExact resultsHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamics0103 physical sciencesAcoustic wave equation010306 general physicsCondensed Matter - Quantum Gases
researchProduct

Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell

2020

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…

High Energy Physics - Theorydimension: 4space-time: SchwarzschildField (physics)Vacuum stateFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)coupling: scalarcoupling: minimal01 natural sciencesGeneral Relativity and Quantum Cosmologyrenormalizationvacuum stateGeneral Relativity and Quantum Cosmologyblack hole: formation0103 physical sciencesStress–energy tensorsymmetry: rotationTensordimension: 2010306 general physicsMathematical physicsPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsshell modelfield theory: scalarfield theory in curved spacegravitation: collapseBlack holeFormal aspects of field theoryUnruh effectHigh Energy Physics - Theory (hep-th)tensor: energy-momentum[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]quantizationSchwarzschild radiusScalar fieldPhysical Review D
researchProduct

Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model

2018

Transverse excitations in analogue black holes induce a mass like term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of parallel peaks. For the most part the structure is completely different from that found in the massless case.

High Energy Physics - TheorylongitudinalPhononOne-dimensional spacetoy modelFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyLongitudinal modeGeneral Relativity and Quantum CosmologyQuantum mechanics0103 physical sciencesexcited stateMassive phonons Hawking radiationcorrelation functionstructure010306 general physicsdimension: 2PhysicsToy model010308 nuclear & particles physicsMassless particleCorrelation function (statistical mechanics)Transverse planetransverseblack hole: acousticHigh Energy Physics - Theory (hep-th)General relativityQuantum Gases (cond-mat.quant-gas)correlation[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]phonon: massiveCondensed Matter - Quantum GasesHawking radiation
researchProduct

Late time approach to Hawking radiation: Terms beyond leading order

2019

Black hole evaporation is studied using wave packets for the modes. These allow for approximate frequency and time resolution. The leading order late time behavior gives the well known Hawking radiation that is independent of how the black hole formed. The focus here is on the higher order terms and the rate at which they damp at late times. Some of these terms carry information about how the black hole formed. A general argument is given which shows that the damping is significantly slower (power law) than what might be naively expected from a stationary phase approximation (exponential). This result is verified by numerical calculations in the cases of 2D and 4D black holes that form from…

PhysicsHigh Energy Physics - Theory010308 nuclear & particles physicsWave packetAstrophysics::High Energy Astrophysical PhenomenaShell (structure)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesNull (physics)Power lawGeneral Relativity and Quantum CosmologyExponential functionBlack holeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamics0103 physical sciencesStationary phase approximation010306 general physicsHawking radiation
researchProduct

Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole

2020

The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of $⟨{^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{ext}}\text{ }\text{ }{^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{int}}⟩$, where ${^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{ext}}$ is the annihilation operator for the Hawking particle and ${^{\mathrm{out}}\stackrel{^}{a}}_{\mathrm{up}}^{\mathrm{int}}$ is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC f…

Physics010308 nuclear & particles physicsSignificant differenceCreation and annihilation operatorsCorrelation function (quantum field theory)01 natural scienceslaw.inventionBlack holeGeneral Relativity and Quantum Cosmologysymbols.namesakeFourier transformlaw0103 physical sciencessymbolsParticleProduction (computer science)010306 general physicsBose–Einstein condensateMathematical physicsPhysical Review D
researchProduct

Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space

2013

The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.

High Energy Physics - TheoryNuclear and High Energy PhysicsHAWKING RADIATION[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Black-hole evaporationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCONDENSATI DI BOSE EINSTEINGeneral Relativity and Quantum Cosmologylaw.inventionGravitationGeneral Relativity and Quantum CosmologyCorrelation functionlawQuantum mechanics0103 physical sciencesQuantum field theory010306 general physicsCurved spaceCondensed Matter::Quantum GasesPhysicsQuantum field theory in curved spacetime[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Condensed Matter::Other010308 nuclear & particles physicsBlack holeHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesBose–Einstein condensateAnalog gravityHawking radiationPhysical Review D
researchProduct

Particle production in the interiors of acoustic black holes

2019

Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This non-thermality is due to the anomalous scattering that occurs in the interior regions.

High Energy Physics - TheoryPhononAstrophysics::High Energy Astrophysical Phenomenatoy modelFOS: Physical sciencesParticle production Black holesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologythermalGeneral Relativity and Quantum Cosmology0103 physical sciencesThermal010306 general physicsPhysicsSIMPLE (dark matter experiment)Condensed matter physicsAnomalous scattering010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]scatteringhorizon: acoustic[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]field theory in curved spaceblack hole: acousticFormal aspects of field theoryHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]ParticleCondensed Matter - Quantum Gasesphonon: production
researchProduct

Pair production due to an electric field in 1+1 dimensions and the validity of the semiclassical approximation

2021

Solutions to the backreaction equation in $1+1$-dimensional semiclassical electrodynamics are obtained and analyzed when considering a time-varying homogeneous electric field initially generated by a classical electric current, coupled to either a quantized scalar field or a quantized spin-$\frac{1}{2}$ field. Particle production by way of the Schwinger effect leads to backreaction effects that modulate the electric field strength. Details of the particle production process are investigated along with the transfer of energy between the electric field and the particles. The validity of the semiclassical approximation is also investigated using a criterion previously implemented for chaotic i…

PhysicsField (physics)010308 nuclear & particles physicsOrder (ring theory)Semiclassical physics01 natural sciencesElectric chargePair production0103 physical sciencesProduction (computer science)Semiclassical gravity010306 general physicsScalar fieldMathematical physicsPhysical Review D
researchProduct