6533b854fe1ef96bd12aeb0f

RESEARCH PRODUCT

Scattering of Co-Current Surface Waves on an Analogue Black Hole

Alessandro FabbriAlessandro FabbriGermain RousseauxScott RobertsonLéo-paul EuvéNicolas James

subject

surface: deformationGeneral Physics and AstronomyFOS: Physical sciencesContext (language use)General Relativity and Quantum Cosmology (gr-qc)black hole: horizonGravitation and Astrophysics01 natural sciences7. Clean energyGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum Cosmology0103 physical scienceswave: scatteringsurfaceeffect: Hawkingcorrelation function010306 general physicsPhysicsSpacetimeScatteringHorizonFluid Dynamics (physics.flu-dyn)Physics - Fluid Dynamics[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Scattering amplitudeBlack holeFlow (mathematics)space-timeSurface waveQuantum electrodynamics[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]

description

We report on what is to our knowledge the first scattering experiment of surface waves on an accelerating transcritical flow, which in the analogue gravity context is described by an effective spacetime with a black-hole horizon. This spacetime has been probed by an incident co-current wave, which partially scatters into an outgoing countercurrent wave on each side of the horizon. The measured scattering amplitudes are compatible with the predictions of the hydrodynamical theory, where the kinematical description in terms of the effective metric is exact.

10.1103/physrevlett.124.141101http://hdl.handle.net/10261/222588