Search results for "Dimensionality Reduction"

showing 10 items of 120 documents

Principal polynomial analysis for remote sensing data processing

2011

Inspired by the concept of Principal Curves, in this paper, we define Principal Polynomials as a non-linear generalization of Principal Components to overcome the conditional mean independence restriction of PCA. Principal Polynomials deform the straight Principal Components by minimizing the regression error (or variance) in the corresponding orthogonal subspaces. We propose to use a projection on a series of these polynomials to set a new nonlinear data representation: the Principal Polynomial Analysis (PPA). We prove that the dimensionality reduction error in PPA is always lower than in PCA. Lower truncation error and increased independence suggest that unsupervised PPA features can be b…

PolynomialTruncation errorbusiness.industryFeature vectorDimensionality reductionPattern recognitionLinear discriminant analysisLinear subspaceProjection (linear algebra)Principal component analysisLife ScienceArtificial intelligencebusinessMathematicsRemote sensing
researchProduct

Multivariate denoising methods combining wavelets and principal component analysis for mass spectrometry data

2010

The identification of new diagnostic or prognostic biomarkers is one of the main aims of clinical cancer research. In recent years, there has been a growing interest in using mass spectrometry for the detection of such biomarkers. The MS signal resulting from MALDI-TOF measurements is contaminated by different sources of technical variations that can be removed by a prior pre-processing step. In particular, denoising makes it possible to remove the random noise contained in the signal. Wavelet methodology associated with thresholding is usually used for this purpose. In this study, we adapted two multivariate denoising methods that combine wavelets and PCA to MS data. The objective was to o…

Principal Component AnalysisMultivariate statisticsbusiness.industryComputer scienceDimensionality reductionNoise reductionClinical BiochemistryAnalytical chemistryReproducibility of ResultsPattern recognitionBiochemistrySignalThresholdingMass SpectrometryIdentification (information)WaveletMultivariate AnalysisPrincipal component analysisHumansArtificial intelligenceDatabases ProteinbusinessMolecular BiologyPROTEOMICS
researchProduct

Comparison of classification methods that combine clinical data and high-dimensional mass spectrometry data

2013

Background The identification of new diagnostic or prognostic biomarkers is one of the main aims of clinical cancer research. Technologies like mass spectrometry are commonly being used in proteomic research. Mass spectrometry signals show the proteomic profiles of the individuals under study at a given time. These profiles correspond to the recording of a large number of proteins, much larger than the number of individuals. These variables come in addition to or to complete classical clinical variables. The objective of this study is to evaluate and compare the predictive ability of new and existing models combining mass spectrometry data and classical clinical variables. This study was co…

ProteomicsComputer sciencePredictive valueContext (language use)computer.software_genreMass spectrometryBiochemistryData typeHigh-dimensionLasso (statistics)Structural BiologyHumansMolecular BiologySelection (genetic algorithm)Applied MathematicsDimensionality reductionClassificationData scienceComputer Science ApplicationsFatty LiverIdentification (information)Sample SizeSpectrometry Mass Matrix-Assisted Laser Desorption-IonizationClinical dataBiomarker (medicine)Classification methodsData miningDNA microarraycomputerAlgorithmsBiomarkersResearch ArticleBMC Bioinformatics
researchProduct

Snowball ICA: A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data

2020

In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order selection (MOS) algorithms have been used to determine the number of estimated components. However, simulations show that even when the model order equals the number of simulated signal sources, traditional ICA algorithms may misestimate the spatial maps of the signal sources. In principle, increasing model order will consider more potential information in the estimation, and should therefore produce more accurate results. However, this strategy may not work for fMRI because …

Scale (ratio)Computer sciencedimension reduction050105 experimental psychologylcsh:RC321-57103 medical and health sciencestoiminnallinen magneettikuvaus0302 clinical medicineSoftwareComponent (UML)0501 psychology and cognitive sciencesmutual informationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySelection (genetic algorithm)Original Researchmodel ordersignaalinkäsittelyNoise (signal processing)business.industryGeneral NeuroscienceDimensionality reduction05 social sciencessignaalianalyysiriippumattomien komponenttien analyysiPattern recognitionMutual informationIndependent component analysisfunctional magnetic resonance imagingindependent component analysisArtificial intelligencebusiness030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroscience
researchProduct

Hierarchies of Self-Organizing Maps for action recognition

2016

We propose a hierarchical neural architecture able to recognise observed human actions. Each layer in the architecture represents increasingly complex human activity features. The first layer consists of a SOM which performs dimensionality reduction and clustering of the feature space. It represents the dynamics of the stream of posture frames in action sequences as activity trajectories over time. The second layer in the hierarchy consists of another SOM which clusters the activity trajectories of the first-layer SOM and learns to represent action prototypes. The third - and last - layer of the hierarchy consists of a neural network that learns to label action prototypes of the second-laye…

Self-organizing mapComputer scienceIntention understandingCognitive NeuroscienceFeature vectorExperimental and Cognitive PsychologySelf-Organizing Map02 engineering and technologyAction recognition03 medical and health sciences0302 clinical medicineArtificial Intelligence0202 electrical engineering electronic engineering information engineeringLayer (object-oriented design)Cluster analysisSet (psychology)Artificial neural networkbusiness.industryDimensionality reductionNeural networkAction (philosophy)020201 artificial intelligence & image processingArtificial intelligencebusinessHierarchical model030217 neurology & neurosurgerySoftwareCognitive Systems Research
researchProduct

Tree Structured Self-Organizing Maps

1999

Publisher Summary This chapter provides an overview of the tree structured self-organizing maps (TS-SOM). It was originally intended as a fast implementation of the self-organizing map (SOM). The chapter explains that TS-SOM is a constructive smoother for a class of dimension reduction problems. There is a well known relation between self-organizing maps and principal curves. Unfortunately in most presentations it is derived by simple reasoning, avoiding the mathematical statement of the problem, which is essential to understand how efficient SOM implementations can be constructed. In this chapter, SOM is derived as a numerical solution of a generic model in a continuous domain, which diffe…

Self-organizing mapTree (data structure)Theoretical computer scienceArtificial neural networkRelation (database)Simple (abstract algebra)Computer scienceDimensionality reductionConstructiveDomain (software engineering)
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Spatial noise-aware temperature retrieval from infrared sounder data

2020

In this paper we present a combined strategy for the retrieval of atmospheric profiles from infrared sounders. The approach considers the spatial information and a noise-dependent dimensionality reduction approach. The extracted features are fed into a canonical linear regression. We compare Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used for these purposes but our analysis shows that one can gain significant improvements of the error rates when using…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine Learningbusiness.industryComputer scienceDimensionality reductionFeature extraction0211 other engineering and technologiesWord error ratePattern recognitionRegression analysis02 engineering and technologyMachine Learning (cs.LG)Principal component analysisLinear regression0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceElectrical Engineering and Systems Science - Signal ProcessingbusinessSpatial analysis021101 geological & geomatics engineering
researchProduct

An Online Metric Learning Approach through Margin Maximization

2011

This work introduces a method based on learning similarity measures between pairs of objects in any representation space that allows to develop convenient recognition algorithms. The problem is formulated through margin maximization over distance values so that it can discriminate between similar (intra-class) and dissimilar (inter-class) elements without enforcing positive definiteness of the metric matrix as in most competing approaches. A passive-aggressive approach has been adopted to carry out the corresponding optimization procedure. The proposed approach has been empirically compared to state of the art metric learning on several publicly available databases showing its potential bot…

Similarity (geometry)business.industryComputationDimensionality reductionSemi-supervised learningMachine learningcomputer.software_genrek-nearest neighbors algorithmPositive definitenessMetric (mathematics)Artificial intelligenceRepresentation (mathematics)businesscomputerMathematics
researchProduct

Salient Pixels and Dimensionality Reduction for Display of Multi/Hyperspectral Images

2012

International audience; Dimensionality Reduction (DR) of spectral images is a common approach to different purposes such as visualization, noise removal or compression. Most methods such as PCA or band selection use either the entire population of pixels or a uniformly sampled subset in order to compute a projection matrix. By doing so, spatial information is not accurately handled and all the objects contained in the scene are given the same emphasis. Nonetheless, it is possible to focus the DR on the separation of specific Objects of Interest (OoI), simply by neglecting all the others. In PCA for instance, instead of using the variance of the scene in each spectral channel, we show that i…

Spectral Images[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingChannel (digital image)Computer scienceMultispectral image0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingProjection (linear algebra)[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0202 electrical engineering electronic engineering information engineeringIAPRComputer vision021101 geological & geomatics engineeringSaliencyPixelbusiness.industryDimensionality reductionHyperspectral imagingPattern recognitionDimensionality reductionVisualizationComputer Science::Computer Vision and Pattern Recognition020201 artificial intelligence & image processingArtificial intelligenceFocus (optics)business[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct