Search results for "Dimensionality reduction"

showing 10 items of 120 documents

Functional principal component analysis for multivariate multidimensional environmental data

2015

Data with spatio-temporal structure can arise in many contexts, therefore a considerable interest in modelling these data has been generated, but the complexity of spatio-temporal models, together with the size of the dataset, results in a challenging task. The modelization is even more complex in presence of multivariate data. Since some modelling problems are more natural to think through in functional terms, even if only a finite number of observations is available, treating the data as functional can be useful (Berrendero et al. in Comput Stat Data Anal 55:2619–2634, 2011). Although in Ramsay and Silverman (Functional data analysis, 2nd edn. Springer, New York, 2005) the case of multiva…

Functional principal component analysisStatistics and ProbabilityMultivariate statistics2300GeneralizationDimensionality reductionGeneralized additive modelFunctional data analysisFunctional principal component analysiContext (language use)computer.software_genreMultivariate spatio-temporal dataCovariateP-splineData miningStatistics Probability and UncertaintycomputerSmoothingGeneral Environmental ScienceMathematics
researchProduct

Semisupervised nonlinear feature extraction for image classification

2012

Feature extraction is of paramount importance for an accurate classification of remote sensing images. Techniques based on data transformations are widely used in this context. However, linear feature extraction algorithms, such as the principal component analysis and partial least squares, can address this problem in a suboptimal way because the data relations are often nonlinear. Kernel methods may alleviate this problem only when the structure of the data manifold is properly captured. However, this is difficult to achieve when small-size training sets are available. In these cases, exploiting the information contained in unlabeled samples together with the available training data can si…

Graph kernelComputer scienceFeature extractioncomputer.software_genreKernel principal component analysisk-nearest neighbors algorithmKernel (linear algebra)Polynomial kernelPartial least squares regressionLeast squares support vector machineCluster analysisTraining setContextual image classificationbusiness.industryDimensionality reductionPattern recognitionManifoldKernel methodKernel embedding of distributionsKernel (statistics)Principal component analysisRadial basis function kernelPrincipal component regressionData miningArtificial intelligencebusinesscomputer2012 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

An overview of incremental feature extraction methods based on linear subspaces

2018

Abstract With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alter…

Information Systems and ManagementComputer scienceDimensionality reductionFeature extraction010103 numerical & computational mathematics02 engineering and technologycomputer.software_genre01 natural sciencesLinear subspaceManagement Information SystemsMatrix decompositionCategorizationDiscriminative modelArtificial IntelligencePrincipal component analysis0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAdaptive learningOrthogonal matrixData mining0101 mathematicscomputerSoftwareKnowledge-Based Systems
researchProduct

Fast Approximated Discriminative Common Vectors Using Rank-One SVD Updates

2013

An efficient incremental approach to the discriminative common vector (DCV) method for dimensionality reduction and classification is presented. The proposal consists of a rank-one update along with an adaptive restriction on the rank of the null space which leads to an approximate but convenient solution. The algorithm can be implemented very efficiently in terms of matrix operations and space complexity, which enables its use in large-scale dynamic application domains. Deep comparative experimentation using publicly available high dimensional image datasets has been carried out in order to properly assess the proposed algorithm against several recent incremental formulations.

Kernel (linear algebra)Discriminative modelRank (linear algebra)Computer scienceDimensionality reductionSingular value decompositionSpace (mathematics)AlgorithmMatrix multiplicationImage (mathematics)
researchProduct

Applying differential geometric LARS algorithm to ultra-high dimensional feature space

2009

Variable selection is fundamental in high-dimensional statistical modeling. Many techniques to select relevant variables in generalized linear models are based on a penalized likelihood approach. In a recent paper, Fan and Lv (2008) proposed a sure independent screening (SIS) method to select relevant variables in a linear regression model defined on a ultrahigh dimensional feature space. Aim of this paper is to define a generalization of the SIS method for generalized linear models based on a differential geometric approach.

LARS dimensionality reduction variable selection differential geometrySettore SECS-S/01 - Statistica
researchProduct

A Random Extension for Discriminative Dimensionality Reduction and Metric Learning

2009

A recently proposed metric learning algorithm which enforces the optimal discrimination of the different classes is extended and empirically assessed using different kinds of publicly available data. The optimization problem is posed in terms of landmark points and then, a stochastic approach is followed in order to bypass some of the problems of the original algorithm. According to the results, both computational burden and generalization ability are improved while absolute performance results remain almost unchanged.

LandmarkOptimization problemDiscriminative modelbusiness.industryGeneralizationPopulation-based incremental learningDimensionality reductionMetric (mathematics)Pattern recognitionExtension (predicate logic)Artificial intelligencebusinessMathematics
researchProduct

Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model

2015

Abstract The early detection of decay caused by fungi in citrus fruit is a primary concern in the post-harvest phase, the automation of this task still being a challenge. This work reports new progress in the automatic detection of early symptoms of decay in citrus fruit after infection with the pathogen Penicillium digitatum using laser-light backscattering imaging. Backscattering images of sound and decaying parts of the surface of oranges cv. ‘Valencia late’ were obtained using laser diode modules emitting at five wavelengths in the visible and near-infrared regions. The images of backscattered light captured by a camera had radial symmetry with respect to the incident point of the laser…

Laser diodeChemistrybusiness.industryScatteringDimensionality reductionFeature vectorLinear discriminant analysisLaserlaw.inventionWavelengthOpticsDistribution functionlawbusinessFood Science
researchProduct

Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery

2022

Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learni…

Leaf Area IndexVegetation Water and Chlorophyll ContentActive LearningContenido de Agua y Clorofila de la VegetaciónDimencionality ReductionÍndice de Superficie FoliarAprendizaje ActivoReducción de DimensionalidadKrigingImágenesHybrid Retrieval WorkflowFlujo de Trabajo de Recuperación HíbridoGeneral Earth and Planetary SciencesImageryleaf area index; vegetation water and chlorophyll content; Gaussian processes regression; hybrid retrieval workflow; dimensionality reduction; active learningKrigeageRemote Sensing
researchProduct

Lossless coding of hyperspectral images with principal polynomial analysis

2014

The transform in image coding aims to remove redundancy among data coefficients so that they can be independently coded, and to capture most of the image information in few coefficients. While the second goal ensures that discarding coefficients will not lead to large errors, the first goal ensures that simple (point-wise) coding schemes can be applied to the retained coefficients with optimal results. Principal Component Analysis (PCA) provides the best independence and data compaction for Gaussian sources. Yet, non-linear generalizations of PCA may provide better performance for more realistic non-Gaussian sources. Principal Polynomial Analysis (PPA) generalizes PCA by removing the non-li…

Lossless compressionData compactionbusiness.industryRoundingGaussianDimensionality reductionHyperspectral imagingPattern recognitionsymbols.namesakePrincipal component analysissymbolsEntropy (information theory)Artificial intelligencebusinessMathematics2014 IEEE International Conference on Image Processing (ICIP)
researchProduct

Clustering-Based Protocol Classification via Dimensionality Reduction

2015

We propose a unique framework that is based upon diffusion processes and other methodologies for finding meaningful geometric descriptions in high-dimensional datasets. We will show that the eigenfunctions of the generated underlying Markov matrices can be used to construct diffusion processes that generate efficient representations of complex geometric structures for high-dimensional data analysis. This is done by non-linear transformations that identify geometric patterns in these huge datasets that find the connections among them while projecting them onto low dimensional spaces. Our methods automatically classify and recognize network protocols. The main core of the proposed methodology…

Mahalanobis distanceMarkov chainbusiness.industryComputer scienceDimensionality reductionParameterized complexityPattern recognitionArtificial intelligenceConstruct (python library)businessFlow networkCluster analysisCommunications protocol
researchProduct