Search results for "Dioxygen"

showing 10 items of 80 documents

Pyridinedicarboxylates, the first mechanism-derived inhibitors for prolyl 4-hydroxylase, selectively suppress cellular hydroxyprolyl biosynthesis. De…

1987

Two pyridinedicarboxylates, predicted [Hanauske-Abel (1983) M.D.-Ph.D. Thesis, Philipps Universität Marburg] and later found to be potent reversible inhibitors of purified prolyl 4-hydroxylase [Majaama, Hanauske-Abel, Günzler & Kivirikko (1984) Eur. J. Biochem. 138, 239-245] were investigated with respect to their effect on hydroxyprolyl biosynthesis in the fibroblast/collagen and the macrophage/Clq systems, and the effect was compared with that of the iron chelator 2,2′-dipyridyl, the compound usually employed to inhibit cellular hydroxyprolyl formation. Only the enzyme-mechanism-derived pyridinedicarboxylates were highly selective inhibitors, and only they lacked overt cytotoxicity. M…

Cell typeCell SurvivalComplement Activating EnzymesGuinea PigsProcollagen-Proline DioxygenaseBiologyBiochemistrychemistry.chemical_compoundBiosynthesisComplement C1In vivomedicineAnimalsHumansSecretionPicolinic AcidsFibroblastCytotoxicityMolecular BiologyCells CulturedDose-Response Relationship DrugComplement C1qEndoplasmic reticulumCell BiologyFibroblastsHydroxyprolineMicroscopy Electronmedicine.anatomical_structureBiochemistrychemistryLipophilicityCollagenResearch ArticleBiochemical Journal
researchProduct

Availability of O 2 as a Substrate in the Cytoplasm of Bacteria under Aerobic and Microaerobic Conditions

1998

ABSTRACT The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O 2 tension [pO 2 ] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O 2 (corresponding to 7 to 8 μM O 2 ) (1 bar = 10 5 Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and micr…

CytoplasmOxygenasePhysiology and MetabolismDiffusionCatecholsParabenschemistry.chemical_elementBenzoatesMicrobiologyOxygenDioxygenaseschemistry.chemical_compoundOxygen ConsumptionCatechol 12-dioxygenaseMolecular BiologyBenzoic acidbiologyPseudomonas putidaSubstrate (chemistry)SuccinatesBenzoic Acidbiology.organism_classificationAerobiosisCatechol 12-DioxygenasePseudomonas putidaGlucoseBiochemistrychemistryCytoplasmOxygenasesBiophysicsJournal of Bacteriology
researchProduct

Cascade complex formation by phosphate in the cobalt(II)/[30]aneN10 anaerobic system

1993

Abstract The interaction of phosphate with the mono- and binuclear cobalt(II) complexes of [30]aneN 10 (1,4,7,10,13,16,19,22,25,28-decaazacyclotriacontane) has been studied by potentiometry in 0.15 mol dm −3 NaClO 4 solution at 298.15 K under anaerobic conditions. The stable species [CoH 2 ([30]aneN 10 )PO 4 ] + , [CoH 4 ([30]aneN 10 )PO 4 ] 3+ , [Co 2 H([30]aneN 10 )PO 4 ] 2+ , [Co 2 H 2 ([30]aneN 10 )PO 4 ] 3+ and [Co 2 H 3 ([30]aneN 10 )PO 4 ] 4+ , where the phosphate anion is directly bound to the metal ions or acts as a second sphere ligand, are formed and their stability constants have been determined. The results obtained allowed for the selection of suitable conditions for the study…

DIOXYGEN CARRIERS; DIOXYGEN BINDING; Co(II) COMPLEXES; POLYAMINE LIGANDS; DITOPIC POLYAMINES; OPEN-CHAIN POLYAZAALKANES; THERMODYNAMICS; ANION COORDINATION CHEMISTRY; INCLUSION COMPLEXESINCLUSION COMPLEXESMetal ions in aqueous solutionComplex formationInorganic chemistryDIOXYGEN BINDINGchemistry.chemical_elementMedicinal chemistryCo(II) COMPLEXESInorganic Chemistrychemistry.chemical_compoundOPEN-CHAIN POLYAZAALKANESANION COORDINATION CHEMISTRYTHERMODYNAMICSMaterials ChemistryDIOXYGEN CARRIERSPhysical and Theoretical ChemistryLigandPhosphatePhosphate anionchemistryDITOPIC POLYAMINESChemical equilibriumAnaerobic exerciseCobaltPOLYAMINE LIGANDS
researchProduct

The glycosyltransferase activities of lysyl hydroxylase 3 (LH3) in the extracellular space are important for cell growth and viability.

2008

Abstract Lysyl hydroxylase (LH) isoform 3 is a post-translational enzyme possessing LH, collagen galactosyltransferase (GT) and glucosyltransferase (GGT) activities. We have demonstrated that LH3 is found not only intracellularly, but also on the cell surface and in the extracellular space, suggesting additional functions for LH3. Here we show that the targeted disruption of LH3 by siRNA causes a marked reduction of both glycosyltransferase activities, and the overexpression of LH3 in HT-1080 cells increases hydroxylation of lysyl residues and the subsequent galactosylation and glucosylation of hydroxylysyl residues. These data confirm the multi-functionality of LH3 in cells. Furthermore, t…

DNA ComplementaryGlycosylationCell SurvivalLysyl hydroxylaseCellhydroxylysyl glycosylationFluorescent Antibody Techniquelysyl hydroxylaseMicrotubulesPermeabilityCell LineGlycosyltransferasemedicineExtracellularAnimalsHumanscell growthViability assayRNA Small InterferingCell Shapecell viabilityCell ProliferationbiologyCell DeathCell growthProcollagen-Lysine 2-Oxoglutarate 5-Dioxygenasecollagen biosynthesisGlycosyltransferasesCell BiologyArticlesGalactosyltransferasesMolecular biologyPeptide FragmentsCulture MediaActin Cytoskeletonmedicine.anatomical_structurepost-translational modificationCell culturebiology.proteinMolecular MedicineGlucosyltransferaseExtracellular Spacehydroxylysyl glycosyltransferaseJournal of cellular and molecular medicine
researchProduct

Crystal structure of human gamma-butyrobetaine hydroxylase.

2010

Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of l-carnitine by hydroxylation of gamma-butyrobetaine (GBB). l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB. To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0A resolution. The GBBH monomer consists of a catalytic double-stranded beta-helix (DBSH) domai…

EGF-like domainStereochemistrygamma-Butyrobetaine DioxygenaseBiophysicsDrug designBiochemistryHydroxylationchemistry.chemical_compoundDioxygenaseCatalytic DomainHumansEnzyme InhibitorsMolecular BiologyHistidinechemistry.chemical_classificationCrystallographybiologyActive siteCell BiologyRecombinant ProteinsZincEnzymeBiochemistrychemistryCyclic nucleotide-binding domainDrug Designbiology.proteinProtein MultimerizationMethylhydrazinesBiochemical and biophysical research communications
researchProduct

Unraveling metabolic flexibility of rhodococci in PCB transformation

2021

International audience; Even though the genetic attributes suggest presence of multiple degradation pathways, most of rhodococci are known to transform PCBs only via regular biphenyl (bph) pathway. Using GC-MS analysis, we monitored products formed during transformation of 2,4,4′-trichlorobiphenyl (PCB-28), 2,2′,5,5′-tetrachlorobiphenyl (PCB-52) and 2,4,3′-trichlorobiphenyl (PCB-25) by previously characterized PCB-degrading rhodococci Z6, T6, R2, and Z57, with the aim to explore their metabolic pleiotropy in PCB transformations. A striking number of different transformation products (TPs) carrying a phenyl ring as a substituent, both those generated as a part of the bph pathway and an array…

Environmental EngineeringStereochemistryHealth Toxicology and Mutagenesis[SDV]Life Sciences [q-bio]0208 environmental biotechnologySubstituent02 engineering and technology010501 environmental sciencesMicrobiology01 natural sciencesDioxygenaseschemistry.chemical_compoundbph pathwayBiotransformationPolychlorinated biphenylsPleiotropyDioxygenaseEnvironmental ChemistryRhodococcusBiologyOxidative decarboxylation0105 earth and related environmental sciencesBiphenylbiologyChemistrytransformation productsPublic Health Environmental and Occupational Healthmultiple pathwaysGeneral MedicineGeneral Chemistrybiology.organism_classificationPollution020801 environmental engineeringTransformation (genetics)Biodegradation EnvironmentalPolychlorinated biphenyls ; Biotransformation ; Rhodococcus ; bph pathway ; Transformation products ; Multiple pathwaysbiotransformationRhodococcus
researchProduct

TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs).

2009

Abstract Oncogenic pathways underlying in the development of myelodysplastic syndromes (MDS) remain poorly characterized, but mutations of the ten-eleven translocation 2 (TET2) gene are frequently observed. In the present work, we evaluated the prognostic impact of TET2 mutations in MDS. Frameshift, nonsense, missense mutations, or defects in gene structure were identified in 22 (22.9%) of 96 patients (95% confidence interval [CI], 14.5-31.3 patients). Mutated and unmutated patients did not significantly differ in initial clinical or hematologic parameters. The 5-year OS was 76.9% (95% CI, 49.2%-91.3%) in mutated versus 18.3% (95% CI, 4.2%-41.1%) in unmutated patients (P = .005). The 3-year…

Genetic MarkersMalemedicine.medical_specialtyPathologyImmunologyBiochemistryGastroenterologyDisease-Free SurvivalFrameshift mutationDioxygenasesPredictive Value of TestsRisk FactorsInternal medicineProto-Oncogene ProteinsmedicineMissense mutationHumansAgedAged 80 and overUnivariate analysisProportional hazards modelbusiness.industryMyelodysplastic syndromesHazard ratioCell BiologyHematologyMiddle Agedmedicine.diseaseConfidence intervalDNA-Binding ProteinsSurvival RateInternational Prognostic Scoring SystemMyelodysplastic SyndromesMutationFemalebusinessFollow-Up StudiesBlood
researchProduct

pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment

2007

Microorganisms degrading phenolic compounds play an important role in soil carbon cycling as well as in pesticide degradation. The pcaH gene encoding a key ring-cleaving enzyme of the -ketoadipate pathway was selected as a functional marker. Using a degenerate primer pair, pcaH fragments were cloned from two agricultural soils. Restriction fragment length polymorphism (RFLP) screening of 150 pcaH clones yielded 68 RFLP families. Comparison of 86 deduced amino acid sequences displayed 70% identity to known PcaH sequences. Phylogenetic analysis results in two major groups mainly related to PcaH sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pai…

Genetic Markers[SDV]Life Sciences [q-bio]Molecular Sequence DataBACTERIAL COMMUNITYSequence alignmentProtocatechuate-34-DioxygenaseActinobacteriaSOIL DNAchemistry.chemical_compoundBacterial ProteinsSequence Analysis ProteinMolecular markerProteobacteriaAmino Acid SequencePesticidesPhylogenySoil MicrobiologyPROTOCATECHUATE 34-DIOXYGENASEDNA PrimersGeneticsbiologyPhylogenetic treeRESTRICTION FRAGMENT LENGTH POLYMORPHISMPOLYMORPHISME DE RESTRICTIONBiodiversityGeneral Medicinebiology.organism_classificationCarbonActinobacteriaBiodegradation EnvironmentalchemistryGenetic markerInsect Science[SDE]Environmental SciencesRFLPProteobacteriaRestriction fragment length polymorphismSequence AlignmentAgronomy and Crop ScienceSoil microbiologyPolymorphism Restriction Fragment LengthPest Management Science
researchProduct

Interfacial Self-Assembly of Water-Soluble Cationic Porphyrins for the Reduction of Oxygen to Water

2012

Meet at the border: Assembly of the water-soluble cobalt tetrakis(N-methylpyridinium-4-yl)porphyrin [CoTMPyP]4+ at soft interfaces is enhanced and stabilized by its interfacial interaction with the lipophilic anion (C6F5)4B−. The supramolecular structure thus formed (see picture) provides excellent catalytic activity in the four-electron reduction of oxygen.

Inorganic chemistrySupramolecular chemistry2Nd-Harmonic Generationchemistry.chemical_element010402 general chemistryporphyrinsOxygen01 natural sciencesCatalysisMolecular ElectrocatalysisCatalysisinterfacesPolarized Interfacechemistry.chemical_compound[SPI]Engineering Sciences [physics]AggregationPolymer chemistry[CHIM]Chemical Sciencesliquid-liquid interfacesComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]oxygen reduction reactionDioxygen010405 organic chemistryCationic polymerizationGeneral ChemistryGeneral Medicineself-assemblyPorphyrin3. Good health0104 chemical scienceschemistryTetrathiafulvaleneSelf-assemblyImmiscible Electrolyte-SolutionsCobaltTetrathiafulvalene
researchProduct

CO Oxidation on Cationic Gold Clusters: A Theoretical Study

2008

Aiming at understanding the elementary steps governing the oxidation of CO catalyzed by dispersed or supported gold nanoclusters, the reactivity of molecular species, such as O2 and CO, on neutral and positively charged Au13 clusters have been studied using a DFT approach. Two CO oxidation mechanisms have been simulated, involving respectively the adsorption of CO and O2 on adjacent catalytic sites (two-sites mechanism) and the competitive interaction of the reactants on the same site (single-site mechanism). It is demonstrated that in the former scheme a definite interaction of CO and O2 with both the charged and neutral cluster is effective, but that a chemical reaction between the adsorb…

Latter mechanismInorganic chemistryReaction pathPhotochemistryChemical reactionNeutral clusterNanoclustersCatalysisMolecular specieAdsorptionCompetitive interactionCluster (physics)Reactivity (chemistry)Physical and Theoretical ChemistrySupported golds Engineering main heading: Carbon monoxideEngineering controlled terms: AdsorptionPositively chargedOxidation Engineering uncontrolled terms: Catalytic siteDioxygenChemistryElementary stepCationic polymerizationOxidation of COCatalytic oxidationCO oxidationSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsFlow interactionGeneral EnergyCarbon dioxideCatalytic oxidationChemical oxygen demandCarbon clusterCationic gold clusterChemical reactionGold compoundThe Journal of Physical Chemistry C
researchProduct