Search results for "Direct detection"
showing 10 items of 31 documents
Implications for dark matter direct detection in the presence of LIGO-motivated primordial black holes
2019
We discuss formation of dark matter (DM) mini-halos around primordial black holes (PBHs) and its implication on DM direct detection experiments, including axion searches. Motivated by LIGO observations, we consider $f_{\textrm{DM}} \simeq 0.01$ as the fraction of DM in PBHs with masses $10 M_{\odot} - 70 M_{\odot}$. In this case, we expect the presence of dressed PBHs after Milky Way halo formation with mini-halo masses peaked around $M_{\textrm{halo}} \sim (50-55) M_{\textrm{PBH}}$. We analyze the effect of tidal forces acting on dressed PBHs within the Milky Way galaxy. In the solar neighborhood, the mini-halos are resistant against tidal disruption from the mean-field potential of the ga…
Planck-scale effects on WIMP dark matter
2014
There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.
Analysis of the XENON100 dark matter search data
2014
The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.
NEMESIS Setup for Indirect Detection of WIMPs
2022
We summarize the evidence for DM-like anomalies in neutron multiplicity spectra collected underground with Pb targets by three independent experiments: NEMESIS (at 210 m.w.e.) NMDS (at 583 m.w.e.), and ZEPLIN-II (at 2850 m.w.e.). A new analysis shows small but persistent anomalies at high neutron multiplicities. Adjusted for differences in detection efficiencies, the positions of the anomalies are consistent between the three systems. Also, the intensities match when corrected for the acquisition time and estimated detection efficiency. While the three measurements are inconclusive when analyzed separately, together, they exclude a statistical fluke to better than one in a million. To prove…
First microscopic evaluation of spin-dependent WIMP-nucleus scattering off 183W
2021
We perform the first consistent calculation of elastic-scattering and inelastic-scattering structure functions for spin-dependent WIMP-nucleus scattering for 183W in a microscopic nuclear-theory framework. The nuclear structure calculations are performed in the microscopic interacting boson-fermion model (IBFM-2). Our results show that while 183W is very insensitive to spin-dependent elastic scattering, the structure function for inelastic scattering is quite sizable at small momentum transfers. Moreover, to our knowledge 183W provides the first studied case where inelastic scattering can compete with elastic scattering as the primary detection signal. peerReviewed
Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2
2018
In August 2017, Advanced Virgo joined Advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the Advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications, this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction…
Detecting gravitational waves from cosmological phase transitions with LISA: an update
2020
MC was funded by the Royal Society under the Newton International Fellowship program. GD would like to thank CNPq (Brazil) for financial support. MH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1), and the Academy of Finland (grant number 286769). SJH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1). The work of JK was supported by Department of Energy (DOE) grant DE-SC0019195 and NSF grant PHY-1719642. TK and GS are funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 \Quantum Universe" - 390833306. JMN is supported by Ramon y Cajal Fellowship contract RYC-2017-22986…
GW190412: Observation of a binary-black-hole coalescence with asymmetric masses
2020
LIGO Scientific Collaboration and Virgo Collaboration: et al.
Advanced Virgo Status
2015
Abstract The detection of a gravitational wave signal in September 2015 by LIGO interferometers, announced jointly by LIGO collaboration and Virgo collaboration in February 2016, opened a new era in Astrophysics and brought to the whole community a new way to look at - or “listen” to - the Universe. In this regard, the next big step was the joint observation with at least three detectors at the same time. This configuration provides a twofold benefit: it increases the signal-to-noise ratio of the events by means of triple coincidence and allows a narrower pinpointing of GW sources, and, in turn, the search for Electromagnetic counterparts to GW signals. Advanced Virgo (AdV) is the second ge…
Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T
2019
We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 × 10−42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new paramet…