Search results for "Disordered system"

showing 10 items of 244 documents

Aging as dynamics in configuration space

1999

The relaxation dynamics of many disordered systems, such as structural glasses, proteins, granular materials or spin glasses, is not completely frozen even at very low temperatures. This residual motion leads to a change of the properties of the material, a process commonly called aging. Despite recent advances in the theoretical description of such aging processes, the microscopic mechanisms leading to the aging dynamics are still a matter of dispute. In this Letter we investigate the aging dynamics of a simple glass former by means of molecular dynamics computer simulation. Using the concept of the inherent structure we give evidence that aging dynamics can be understood as a decrease of …

Materials scienceSpin glassStatistical Mechanics (cond-mat.stat-mech)Dynamics (mechanics)General Physics and AstronomyFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Soft Condensed MatterCondensed Matter - Disordered Systems and Neural NetworksGranular materialMolecular dynamicsChemical physicsRelaxation (physics)Soft Condensed Matter (cond-mat.soft)Configuration spaceCondensed Matter - Statistical Mechanics
researchProduct

Magnetic properties of Cd–Mg–Tb quasicrystal

2004

Abstract The magnetic properties of an icosahedral Cd–Mg–Tb quasicrystal were studied by dc magnetization and thermoremanent magnetization time decay measurements. An unusual temperature dependence of the susceptibility below freezing temperature can be attributed to the inhomogeneous sample structure. In addition to the quasicrystalline portion which exhibits a spin-glass transition at 12.5 K a part of the sample behaves like a paramagnet. During aging of the sample in air the spin-glass part transforms into the paramagnetic one. The linear M ∝ H dependence of the thermoremanent magnetization time decay on magnetic field is quite different as compared to canonical spin glasses.

Materials scienceSpin glassThermoremanent magnetizationCondensed matter physicsIcosahedral symmetryMechanical EngineeringTime decayQuasicrystalCondensed Matter PhysicsCondensed Matter::Disordered Systems and Neural NetworksMagnetic fieldParamagnetismMagnetizationMechanics of MaterialsCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceMaterials Science and Engineering: A
researchProduct

Coarsened Lattice Model for Random Granular Systems

1998

In random systems consisting of grains with size distributions the transport properties are difficult to explore by network models. However, the concentration dependence of effective conductivity and its critical properties can be considered within coarsened lattice model proposed that takes into account information from experimentally known size histograms. For certain classes of size distributions the specific local arrangements of grains can induce either symmetrical or unsymmetrical critical behaviour at two threshold concentrations. Using histogram related parameters the non-monotonic behaviour of the conductor-insulator and conductor-superconductor threshold is demonstrated.

Materials scienceStatistical Mechanics (cond-mat.stat-mech)Critical phenomenaFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)ConductivityCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsGrain sizeElectronic Optical and Magnetic MaterialsDistribution functionPercolationHistogramStatistical physicsLattice model (physics)Condensed Matter - Statistical MechanicsNetwork model
researchProduct

Slow dynamics in ion-conducting sodium silicate melts: Simulation and mode-coupling theory

2005

A combination of molecular-dynamics (MD) computer simulation and mode-coupling theory (MCT) is used to elucidate the structure-dynamics relation in sodium-silicate melts (NSx) of varying sodium concentration. Using only the partial static structure factors from the MD as an input, MCT reproduces the large separation in relaxation time scales of the sodium and the silicon/oxygen components. This confirms the idea of sodium diffusion channels which are reflected by a prepeak in the static structure factors around 0.95 A^-1, and shows that it is possible to explain the fast sodium-ion dynamics peculiar to these mixtures using a microscopic theory.

Materials scienceStatistical Mechanics (cond-mat.stat-mech)SiliconSodiumFOS: Physical sciencesGeneral Physics and Astronomychemistry.chemical_elementSodium silicateDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksOxygenIonchemistry.chemical_compoundchemistryChemical physicsMode couplingDiffusion (business)Microscopic theoryCondensed Matter - Statistical MechanicsEurophysics Letters (EPL)
researchProduct

Light-induced ionic processes in optical oxide glasses

1991

Abstract The density of optical glasses is changed by the influence of light capable of generating color centers in these materials. Such defect generation is not only an electronic process, but an atomic displacement is also necessary. The strong localization of electronic and vibrational excitations in the glass network leads to the high efficiency of sub-threshold defect generation. Secondary ionic processes lead to the changes of basic glass properties (light refractive index, density, mechanical strength, etc.); thus, it is possible to use optical glasses as light detectors for appropriate wavelengths.

Materials sciencebusiness.industryDetectorOxideIonic bondingCondensed Matter PhysicsCondensed Matter::Disordered Systems and Neural NetworksElectronic Optical and Magnetic Materialschemistry.chemical_compoundWavelengthchemistryMechanical strengthMaterials ChemistryCeramics and CompositesLight inducedOptoelectronicsbusinessAtomic displacementRefractive indexJournal of Non-Crystalline Solids
researchProduct

Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer simulation study of a continuous Asakura–O…

2008

We propose a new coarse-grained model for the description of liquid-vapor phase separation of colloid-polymer mixtures. The hard-sphere repulsion between colloids and between colloids and polymers, which is used in the well-known Asakura-Oosawa (AO) model, is replaced by Weeks-Chandler-Anderson potentials. Similarly, a soft potential of height comparable to thermal energy is used for the polymer-polymer interaction, rather than treating polymers as ideal gas particles. It is shown by grand-canonical Monte Carlo simulations that this model leads to a coexistence curve that almost coincides with that of the AO model and the Ising critical behavior of static quantities is reproduced. Then the …

Materials sciencecritical pointsMonte Carlo methodFOS: Physical sciencesGeneral Physics and AstronomyThermodynamicsCondensed Matter - Soft Condensed MatterCritical point (mathematics)Molecular dynamicscolloidspolymer solutionsPhysical and Theoretical Chemistryliquid-vapour transformationsBinodalliquid mixturesLennard-Jones potentialMonte Carlo methodsDisordered Systems and Neural Networks (cond-mat.dis-nn)Statistical mechanicsCondensed Matter - Disordered Systems and Neural Networksself-diffusionIdeal gasliquid theoryCondensed Matter::Soft Condensed Mattermolecular dynamics methodLennard-Jones potentialSoft Condensed Matter (cond-mat.soft)Ising modelstatistical mechanicsphase separationThe Journal of Chemical Physics
researchProduct

Effect of mixing and spatial dimension on the glass transition

2009

We study the influence of composition changes on the glass transition of binary hard disc and hard sphere mixtures in the framework of mode coupling theory. We derive a general expression for the slope of a glass transition line. Applied to the binary mixture in the low concentration limits, this new method allows a fast prediction of some properties of the glass transition lines. The glass transition diagram we find for binary hard discs strongly resembles the random close packing diagram. Compared to 3D from previous studies, the extension of the glass regime due to mixing is much more pronounced in 2D where plasticization only sets in at larger size disparities. For small size disparitie…

Materials sciencepacs:82.70.DdCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)business.industryDiagramRandom close packBinary numberFOS: Physical sciencesCondensed Matter - Soft Condensed MatterCondensed Matter::Disordered Systems and Neural NetworksCondensed Matter::Soft Condensed MatterOpticsPhase (matter)Mode couplingSoft Condensed Matter (cond-mat.soft)ddc:530Glass transitionbusinesspacs:64.70.Q-Mixing (physics)Condensed Matter - Statistical Mechanicspacs:64.70.PLine (formation)
researchProduct

Equilibrating Glassy Systems with Parallel Tempering

2001

We discuss the efficiency of the so-called parallel tempering method to equilibrate glassy systems also at low temperatures. The main focus is on two structural glass models, SiO2 and a Lennard-Jones system, but we also investigate a fully connected 10 state Potts-glass. By calculating the mean squared displacement of a tagged particle and the spin-autocorrelation function, we find that for these three glass-formers the parallel tempering method is indeed able to generate, at low temperatures, new independent configurations at a rate which is O(100) times faster than more traditional algorithms, such as molecular dynamics and single spin flip Monte Carlo dynamics. In addition we find that t…

Mean squared displacementMolecular dynamicsMaterials scienceSpeedupFunction (mathematics)Statistical physicsParallel temperingSpin-flipFocus (optics)SupercoolingCondensed Matter::Disordered Systems and Neural Networks
researchProduct

Channel Formation and Intermediate Range Order in Sodium Silicate Melts and Glasses

2004

We use inelastic neutron scattering and molecular dynamics simulation to investigate the interplay between the structure and the fast sodium ion diffusion in various sodium silicates. With increasing temperature and decreasing density the structure factors exhibit an emerging prepeak around 0.9 A^-1. We show, that this prepeak has its origin in the formation of sodium rich channels in the static structure. The channels serve as preferential ion conducting pathways in the relative immobile Si-O matrix. On cooling below the glass transition this intermediate range order is frozen in.

Models MolecularSiliconSodiumNeutron diffractionFOS: Physical sciencesGeneral Physics and Astronomychemistry.chemical_elementSodium silicateInelastic scatteringInelastic neutron scatteringIonDiffusionchemistry.chemical_compoundIonic conductivityIonsModels StatisticalPhysicsSilicatesSodiumTemperatureDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksOxygenchemistryChemical physicsGlassGlass transitionPhysical Review Letters
researchProduct

Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model

2015

We study the equilibrium properties of the one-dimensional disordered Bose-Hubbard model by means of a gauge-adaptive tree tensor network variational method suitable for systems with periodic boundary conditions. We compute the superfluid stiffness and superfluid correlations close to the superfluid to glass transition line, obtaining accurate locations of the critical points. By studying the statistics of the exponent of the power-law decay of the correlation, we determine the boundary between the superfluid region and the Bose glass phase in the regime of strong disorder and in the weakly interacting region, not explored numerically before. In the former case our simulations are in agreem…

Monte Carlo methodGeneral Physics and AstronomyBoundary (topology)FOS: Physical sciencesBose–Hubbard model01 natural sciencesCondensed Matter::Disordered Systems and Neural Networks010305 fluids & plasmasSuperfluidityPhysics and Astronomy (all)Bose glass; disorder-driven phase transition; numerical simulation of quantum many-body systems; Physics and Astronomy (all)0103 physical sciencesnumerical simulation of quantum many-body systemsPeriodic boundary conditionsTensor010306 general physicsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsCondensed matter physicsdisorder-driven phase transitionCondensed Matter::OtherBose glassDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks16. Peace & justiceVariational methodExponentQuantum Physics (quant-ph)
researchProduct