Search results for "Dispersion."

showing 10 items of 1094 documents

Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response

2011

International audience; We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic…

01 natural sciencesoptical instabilitiesSchrödinger equation010309 opticssymbols.namesakeand lossesQuantum mechanics0103 physical sciencesDispersion (optics)Dynamics of nonlinear optical systemsOptical solitonssolitons010306 general physicsPropagationNonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]and optical spatio-temporal dynamicsscatteringWave equationAtomic and Molecular Physics and OpticsSupercontinuumNonlinear systemFrequency domainsymbolsoptical chaos and complexitySolitonnonlinear guided waves
researchProduct

Ab Initio Modeling of Y and O Solute Atom Interaction in Small Clusters within the bcc Iron Lattice

2018

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euroatom research and training programme 2014–2018 under grant agreement No 633053. The authors are indebted to A. Möslang and P. V. Vladimirov for stimulating discussions. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsMaterials scienceAb initio02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsDFT calculations01 natural sciences7. Clean energyMolecular physicsElectronic Optical and Magnetic Materialsyttrium oxideLattice (order)oxide dispersion strengthened (ODS) steels0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]0210 nano-technologydefectsphysica status solidi (b)
researchProduct

Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates

2017

Abstract We propose a new type of phononic crystal (PnC) composed of a periodic alternation of circular cavity sandwich plates. In the low-frequency regime, the crystal can modulate the propagation of flexural waves. Governing equations are deduced basing on the classical theory of coupled extensional and flexural vibrations of plates. The dispersion relation of the infinite PnC is calculated by combining the transfer matrix method with Bloch theory. The dynamic response of the PnC with finite unit cells is further studied with finite element analysis. An experiment is carried out to demonstrate the performance of the PnC in vibration isolation. Numerical results and experimental results bo…

010302 applied physicsMaterials scienceBand gapbusiness.industryAttenuationTransfer-matrix method (optics)02 engineering and technologyStructural engineeringLow frequency021001 nanoscience & nanotechnology01 natural sciencesFinite element methodComputational physicsCrystalVibration isolationDispersion relation0103 physical sciencesCeramics and Composites0210 nano-technologybusinessCivil and Structural EngineeringComposite Structures
researchProduct

Ultra-Wide Band Gap in Two-Dimensional Phononic Crystal with Combined Convex and Concave Holes

2017

A phononic crystal with an ultra‐wide band gap is proposed, whose unit cell consists of a cross‐like concave hole in the center and four square convex holes at the corners. The dispersion relations, modal kinetic energy ratio, and eigenmodes at edges of the band gaps are investigated by using the finite element method. The influence of the geometrical parameters of the convex and concave holes on the band gaps is further analyzed. After optimization, an ultra‐wide band gap with gap‐to‐midgap ratio of 156.0% is achieved, with the filling fraction keeping a relative small value. Numerical results illustrate that the combination of convex and concave holes is a practicable direction for struct…

010302 applied physicsMaterials scienceCondensed matter physicsBand gapRegular polygonUltra-wideband02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsKinetic energy01 natural sciencesSquare (algebra)Finite element methodCrystalDispersion relation0103 physical sciencesGeneral Materials Science0210 nano-technologyphysica status solidi (RRL) - Rapid Research Letters
researchProduct

Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature

2011

Abstract The growth of GaN nanowires by means of plasma assisted molecular beam epitaxy directly on Si(1 1 1) has been investigated as a function of temperature. Statistical analysis of scanning electron microscopy pictures taken for different growth temperatures has revealed that density, diameter, length and length dispersion of nanowires were strongly dependent on temperature. Length dispersion, in particular, was found to be significant at high temperature. These features have been assigned to the different duration of the nucleation process with temperature, namely to the dependence with temperature of the time necessary for the size increase of the three-dimensional precursors up to a…

010302 applied physicsMaterials scienceScanning electron microscopeNucleationNanowireAnalytical chemistry02 engineering and technologyPlasma021001 nanoscience & nanotechnologyCondensed Matter PhysicsCritical value01 natural sciencesSize increaseInorganic ChemistryCondensed Matter::Materials ScienceCrystallography0103 physical sciencesMaterials Chemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyDispersion (chemistry)ComputingMilieux_MISCELLANEOUSMolecular beam epitaxy
researchProduct

Guiding and splitting Lamb waves in coupled-resonator elastic waveguides

2018

Abstract We investigate experimentally Lamb wave propagation in coupled-resonator elastic waveguides (CREWs) formed by a chain of cavities in a two-dimensional phononic crystal slab with cross holes. Wide complete bandgaps, extending from 53 to 88 kHz, are first measured in a finite phononic crystal slab sample. A straight waveguide and a wave splitting circuit with 90° bends are then designed, fabricated and measured. Elastic Lamb waves are excited by a piezoelectric patch attached to one side of the phononic slab and detected using a scanning vibrometer. Strongly confined guiding and splitting at waveguide junctions are clearly observed for several guided waves. Numerical simulations are …

010302 applied physicsMaterials sciencebusiness.industryPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPiezoelectricitylaw.inventionCrystalResonatorLamb wavesOpticslaw0103 physical sciencesDispersion (optics)Ceramics and CompositesSlab0210 nano-technologybusinessLaser Doppler vibrometerWaveguideCivil and Structural EngineeringComposite Structures
researchProduct

Casting technology for ODS steels – dispersion of nanoparticles in liquid metals

2017

Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals…

010302 applied physicsNanocompositeMaterials scienceMetallurgychemistry.chemical_elementNanoparticleField strength02 engineering and technologySuperconducting magnet021001 nanoscience & nanotechnology01 natural scienceschemistryCasting (metalworking)Cavitation0103 physical sciences0210 nano-technologyTinDispersion (chemistry)IOP Conference Series: Materials Science and Engineering
researchProduct

Quantification of relaxor behavior in (1 − x)Na0.5Bi0.5TiO3 – xCaTiO3 lead-free ceramics system

2019

Abstract This work examines the relaxor behavior of lead-free ceramic (1 − x)Na0.5Bi0.5TiO3–xCaTiO3 systems. A stable rhombohedral (R3c) phase is detected at room temperature for all compositions by XRD and Raman spectroscopy. Relaxor behavior was observed in the temperature range 300 K - 400 K for all materials. Ceramics exhibit normal ferroelectric properties at room temperature, and then they develop relaxor characteristics with increasing temperature showing the same dispersive properties. This work quantifies the relaxor phenomenon at low temperature. For instance, the maximum temperature of relaxor and the order of dispersion were determined at the strongest dispersion. Finally, the s…

010302 applied physicsWork (thermodynamics)Maximum temperatureMaterials scienceThermodynamics02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesFerroelectricitysymbols.namesakevisual_artPhase (matter)0103 physical sciencesDispersion (optics)Materials ChemistryCeramics and Compositesvisual_art.visual_art_mediumsymbols[CHIM]Chemical SciencesCeramic0210 nano-technologyRaman spectroscopyJournal of the European Ceramic Society
researchProduct

Pressure‐induced widths and shifts for the ν3 band of methane

1994

International audience; Widths and shifts of methane lines perturbed by nitrogen are calculated using a complex-valued implementation of Robert-Bonamy (RB) theory. The static intermolecular potential is described as a sum of electrostatic forces and Lennard-Jones (6-12) atom-atom terms, using literature values for all physical parameters. Vibrational dependence of the isotropic potential is obtained from the polarizability of methane assuming a dispersion interaction. The repulsive part of the Lennard-Jones accounts for the greatest part of widths, while dispersion interactions are largely responsible for shifts. Although the average error between calculated and observed linewidths (up to J…

010304 chemical physicsMathematical modelAbsorption spectroscopyIntermolecular forceIsotropyGeneral Physics and Astronomy7. Clean energy01 natural sciencesMethane010309 opticschemistry.chemical_compoundLennard-Jones potentialchemistryPolarizability0103 physical sciencesDispersion (optics)Physics::Atomic and Molecular ClustersPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsThe Journal of Chemical Physics
researchProduct

The nature of interactions of benzene with CF3I and CF3CH2I

2019

In situ grown crystals of CF3I and CF3CH2I are dominated by I⋯I and F⋯F interactions. Their co-crystals with benzene, (CF3I)2·C6H6 and CF3CH2I·C6H6, contain two completely different sets of intermolecular interactions. (CF3I)2·C6H6 shows a unique halogen-bond type: above-the-bond C–I⋯πC6H6 interactions. CF3CH2I·C6H6 shows above-the-centre C–H⋯πC6H6 interactions. These interactions are electrostatically dominated type II halogen bonds between single halogenoalkane molecules and weaker dispersion dominated interactions between the co-crystal components. The observed preferences for benzene for the two binding partners match with calculated molecular electrostatic potentials.

010405 organic chemistryChemistryIntermolecular forceMetals and AlloysGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundChemical physicsHalogenMaterials ChemistryCeramics and CompositesMoleculeDispersion (chemistry)BenzeneChemical Communications
researchProduct