Search results for "Dissipative system"
showing 10 items of 195 documents
Dissipative solitons for mode-locked lasers
2012
International audience; Dissipative solitons are localized formations of an electromagnetic field that are balanced through an energy exchange with the environment in presence of nonlinearity, dispersion and/or diffraction. Their growing use in the area of passively mode-locked lasers is remarkable: the concept of a dissipative soliton provides an excellent framework for understanding complex pulse dynamics and stimulates innovative cavity designs. Reciprocally, the field of mode-locked lasers serves as an ideal playground for testing the concept of dissipative solitons and revealing their unusual dynamics. This Review provides basic definitions of dissipative solitons, summarizes their imp…
Filtering with dissipativity for T-S fuzzy systems with time-varying delay: Reciprocally convex approach
2013
This paper is focused on the problem of reliable filter design with strictly dissipativity for a class of discrete-time T-S fuzzy time-delay systems. Our attention is paid on the design of reliable filter to ensure a strictly dissipative performance for the filtering error system. By employing the reciprocally convex approach, a sufficient condition of dissipativity analysis is obtained for T-S fuzzy delayed systems with sensor failures. A desired reliable filter is designed by solving a convex optimization problem.
Floquet states in dissipative open quantum systems
2019
Abstract We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell–Bloch equation. In a resonant driving condition, we find that the transverse relaxation, also known as decoherence, significantly destructs the formation of Floquet states while the longitudinal relaxation does not directly affect it. Furthermore, by evaluating the quasienergy spectrum of the nonequilibrium steady states, we demonstrate that Rabi splitting can be observed as long as the decoherence time is as short as one third of the Rabi-cycle. Moreover, we find that Floquet states can be formed even under significant …
FOUNDATIONS OF FRACTIONAL DYNAMICS
1995
Time flow in dynamical systems is reconsidered in the ultralong time limit. The ultralong time limit is a limit in which a discretized time flow is iterated infinitely often and the discretization time step is infinite. The new limit is used to study induced flows in ergodic theory, in particular for subsets of measure zero. Induced flows on subsets of measure zero require an infinite renormalization of time in the ultralong time limit. It is found that induced flows are given generically by stable convolution semigroups and not by the conventional translation groups. This could give new insight into the origin of macroscopic irreversibility. Moreover, the induced semigroups are generated …
Non-Gaussian correlations imprinted by local dephasing in fermionic wires
2020
We study the behavior of an extended fermionic wire coupled to a local stochastic field. Since the quantum jump operator is Hermitian and quadratic in fermionic operators, it renders the model soluble, allowing investigation of the properties of the non-equilibrium steady-state and the role of dissipation-induced fluctuations. We derive a closed set of equations of motion solely for the two-point correlator; on the other hand, we find, surprisingly, that the many-body state exhibits non-Gaussian correlations. Density-density correlation function demonstrates a crossover from a regime of weak dissipation characterized by moderate heating and stimulated fluctuations to a quantum Zeno regime r…
The damped harmonic oscillator in deformation quantization
2005
We propose a new approach to the quantization of the damped harmonic oscillator in the framework of deformation quantization. The quantization is performed in the Schr\"{o}dinger picture by a star-product induced by a modified "Poisson bracket". We determine the eigenstates in the damped regime and compute the transition probability between states of the undamped harmonic oscillator after the system was submitted to dissipation.
Quantum transport and the phase space structure of the Wightman functions
2019
We study the phase space structure of exact quantum Wightman functions in spatially homogeneous, temporally varying systems. In addition to the usual mass shells, the Wightman functions display additional coherence shells around zero frequency $k_0=0$, which carry the information of the local quantum coherence of particle-antiparticle pairs. We find also other structures, which encode non-local correlations in time, and discuss their role and decoherence. We give a simple derivation of the cQPA formalism, a set of quantum transport equations, that can be used to study interacting systems including the local quantum coherence. We compute quantum currents created by a temporal change in a par…
Non-equilibrium dynamics of a scalar field with quantum backreaction
2021
We study the dynamical evolution of coupled one- and two-point functions of a scalar field in the 2PI framework at the Hartree approximation, including backreaction from out-of-equilibrium modes. We renormalize the 2PI equations of motion in an on-shell scheme in terms of physical parameters. We present the Hartree-resummed renormalized effective potential at finite temperature and critically discuss the role of the effective potential in a non-equilibrium system. We follow the decay and thermalization of a scalar field from an initial cold state with all energy stored in the potential, into a fully thermalized system with a finite temperature. We identify the non-perturbative processes of …
Lindblad equation approach for the full counting statistics of work and heat in driven quantum systems
2013
We formulate the general approach based on the Lindblad equation to calculate the full counting statistics of work and heat produced by driven quantum systems weakly coupled with a Markovian thermal bath. The approach can be applied to a wide class of dissipative quantum systems driven by an arbitrary force protocol. We show the validity of general fluctuation relations and consider several generic examples. The possibilities of using calorimetric measurements to test the presence of coherence and entanglement in the open quantum systems are discussed. QC 20141010
LONG TIME BEHAVIOR OF A SHALLOW WATER MODEL FOR A BASIN WITH VARYING BOTTOM TOPOGRAPHY
2002
We study the long time behavior of a shallow water model introduced by Levermore and Sammartino to describe the motion of a viscous incompressible fluid confined in a basin with topography. Here we prove the existence of a global attractor and give an estimate on its Hausdorff and fractal dimension.