Search results for "Domain"

showing 10 items of 2485 documents

Identification of a classic nuclear localization signal at the N terminus that regulates the subcellular localization of Rbfox2 isoforms during diffe…

2016

Nuclear localization of the alternative splicing factor Rbfox2 is achieved by a C-terminal nuclear localization signal (NLS) which can be excluded from some Rbfox2 isoforms by alternative splicing. While this predicts nuclear and cytoplasmic localization, Rbfox2 is exclusively nuclear in some cell types. Here, we identify a second NLS in the N terminus of Rbfox2 isoform 1A that is not included in Rbfox2 isoform 1F. Rbfox2 1A isoforms lacking the C-terminal NLS are nuclear, whereas equivalent 1F isoforms are cytoplasmic. A shift in Rbfox2 expression toward cytoplasmic 1F isoforms occurs during epithelial to mesenchymal transition (EMT) and could be important in regulating the activity and fu…

0301 basic medicineGene isoformCytoplasmEpithelial-Mesenchymal TransitionNuclear Localization SignalsBiophysicsBiochemistryCell LineTransforming Growth Factor beta103 medical and health sciencesMiceMammary Glands AnimalProtein DomainsStructural BiologyCell Line TumorGeneticsNLSAnimalsProtein IsoformsAmino Acid SequenceMolecular BiologyCell NucleusChemistryAlternative splicingCell DifferentiationEpithelial CellsMouse Embryonic Stem CellsCell BiologySubcellular localizationMolecular biologyCell biologyAlternative Splicing030104 developmental biologyP19 cellCytoplasmRNA splicingRNA Splicing FactorsSequence AlignmentNuclear localization sequenceSignal TransductionFEBS letters
researchProduct

A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development.

2017

Summary Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apop…

0301 basic medicineGenome instabilityMaleliver; Hepatocellular carcinoma; DNA damage response; replication stress; apoptosisCancer ResearchDNA RepairCarcinogenesisFas-Associated Death Domain ProteinApoptosisurologic and male genital diseasesDNA damage responseDna Damage Response ; Apoptosis ; Hepatocellular Carcinoma ; Liver ; Replication StressHistonesMice0302 clinical medicineRisk FactorsFADDPhosphorylationCellular SenescenceCaspase 8biologyLiver Neoplasmshepatocellular carcinomaLiver regeneration3. Good healthHistoneOncologyReceptors Tumor Necrosis Factor Type I030220 oncology & carcinogenesisReceptor-Interacting Protein Serine-Threonine KinasesFemalebiological phenomena cell phenomena and immunityCell agingCarcinoma HepatocellularDNA damageDNA repairreplication stressCaspase 8liverArticleGenomic Instability03 medical and health sciencesAnimalsHepatectomyHumansCrosses GeneticCell ProliferationJNK Mitogen-Activated Protein KinasesCell BiologyLiver Regeneration030104 developmental biologyImmunologyChronic Diseasebiology.proteinCancer researchHepatocytesMyeloid Cell Leukemia Sequence 1 ProteinDNA Damage
researchProduct

Analysis of substrate binding in individual active sites of bifunctional human ATIC

2018

Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to blo…

0301 basic medicineHydroxymethyl and Formyl TransferasesModels MolecularRibonucleotideStereochemistryBiophysicsBiochemistryAnalytical ChemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundMultienzyme ComplexesCatalytic DomainTransferaseHumansNucleotidePhosphofructokinase 2Bifunctional enzymesMolecular Biologychemistry.chemical_classification030102 biochemistry & molecular biologybiologyNucleotidesActive siteCooperative bindingIsothermal titration calorimetryXanthosine monophosphate030104 developmental biologyBiochemistrychemistryNucleotide DeaminasesMultiple binding sitesbiology.proteinIsothermal titration calorimetryProtein Binding
researchProduct

Feedback Regulation of Syk by Protein Kinase C in Human Platelets

2019

The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIb&alpha

0301 basic medicineIndolesPlatelet AggregationSyk030204 cardiovascular system & hematologyenvironment and public healthMaleimideslcsh:Chemistrychemistry.chemical_compound0302 clinical medicinePhosphorylationlcsh:QH301-705.5SpectroscopyFeedback PhysiologicalKinaseConvulxinhemic and immune systemsGeneral MedicineComputer Science ApplicationsCell biologyAdenosine DiphosphateplateletsPhosphorylationbiological phenomena cell phenomena and immunityBlood Plateletschemical and pharmacologic phenomenaViper Venomsspleen tyrosine kinase (Syk)CatalysisArticleInorganic Chemistryglycoprotein VIglycoprotein Ibα03 medical and health sciencesCrotalid VenomsHumansSyk KinaseCyclic adenosine monophosphateLectins C-TypePlatelet activationPhysical and Theoretical ChemistryMolecular BiologyProtein kinase CPhospholipase C gammaOrganic Chemistryenzymes and coenzymes (carbohydrates)030104 developmental biologyProtein kinase domainchemistrylcsh:Biology (General)lcsh:QD1-999Calciumcyclic adenosine monophosphate (cAMP)protein kinase CInternational Journal of Molecular Sciences
researchProduct

In Silico Insights towards the Identification of NLRP3 Druggable Hot Spots

2019

NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) activation has been linked to several chronic pathologies, including atherosclerosis, type-II diabetes, fibrosis, rheumatoid arthritis, and Alzheimer’s disease. Therefore, NLRP3 represents an appealing target for the development of innovative therapeutic approaches. A few companies are currently working on the discovery of selective modulators of NLRP3 inflammasome. Unfortunately, limited structural data are available for this target. To date, MCC950 represents one of the most promising noncovalent NLRP3 inhibitors. Recently, a possible region for the binding of MCC950 to the NLRP3 protein was described but no details were …

0301 basic medicineInflammasomesComputer sciencehomology modelingMolecular ConformationDruggabilitymcc950Ligands01 natural sciencesPyrin domainlcsh:Chemistrynlrp3 modulationlcsh:QH301-705.5SpectroscopyMolecular Structureintegumentary systemCommunicationInflammasomeGeneral MedicineComputer Science ApplicationsMolecular Docking SimulationdockingProtein Bindingmedicine.drugIn silicoinduced-fit dockingComputational biologyMolecular Dynamics Simulation010402 general chemistryCatalysisInorganic ChemistryStructure-Activity Relationship03 medical and health sciencesNLR Family Pyrin Domain-Containing 3 Proteinnacht domainmedicineHumansHomology modelingPhysical and Theoretical ChemistryMolecular BiologyBinding SitesOrganic ChemistryHydrogen BondingBinding processmolecular dynamics0104 chemical sciences030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Docking (molecular)MutationNACHT domainwalker bInternational Journal of Molecular Sciences
researchProduct

Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases

2021

The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition…

0301 basic medicineInflammasomesmedicine.medical_treatmentPhytochemicalsAnti-Inflammatory AgentsInflammation03 medical and health sciences0302 clinical medicineNLR Family Pyrin Domain-Containing 3 ProteinmedicineAnimalsHumansInflammationPharmacologyInnate immune systemintegumentary systembusiness.industryMechanism (biology)Inflammasome030104 developmental biologyCytokinePhytochemical030220 oncology & carcinogenesisImmunologyNLRP3 inflammasome activationInflammation Mediatorsmedicine.symptomSignal transductionbusinessSignal Transductionmedicine.drugPharmacological Research
researchProduct

Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling

2016

Many membrane-bound sensor kinases require accessory proteins for function. The review describes functional control of membrane-bound sensors by transporters. The C4-dicarboxylate sensor kinase DcuS requires the aerobic or anaerobic C4-dicarboxylate transporters DctA or DcuB, respectively, for function and forms DctA/DcuS or DcuB/DcuS sensor complexes. Free DcuS is in the permanent (ligand independent) ON state. The DctA/DcuS and DcuB/DcuS complexes, on the other hand, control expression in response to C4-dicarboxylates. In DctA/DcuS, helix 8b of DctA and the PASC domain of DcuS are involved in interaction. The stimulus is perceived by the extracytoplasmic sensor domain (PASP) of DcuS. The …

0301 basic medicineKinase030106 microbiologyComplex formationTransporterLimitingBiologymedicine.disease_causeCell biology03 medical and health sciencesTransmembrane signallingBiochemistryProtein kinase domainmedicineEscherichia coli
researchProduct

Double-exponential kinetics of binding and redistribution of the fluorescent dyes in cell membranes witness for the existence of lipid microdomains.

2018

Abstract New technique of detecting lateral heterogeneity of the plasma membrane of living cells by means of membrane-binding fluorescent dyes is proposed. The kinetics of dye incorporation into the membrane or its lateral diffusion inside the membrane is measured and decomposed into exponential components by means of the Maximum Entropy Method. Two distinct exponential components are obtained consistently in all cases for several fluorescent dyes, two different cell lines and in different types of experiments including spectroscopy, flow cytometry and fluorescence recovery after photobleaching. These components are attributed to the liquid-ordered and disordered phases in the plasma membra…

0301 basic medicineKineticsBiophysicsBiochemistryFlow cytometry03 medical and health sciencesJurkat Cells0302 clinical medicineMembrane MicrodomainsmedicineHumansSpectroscopyMolecular BiologyDynamic equilibriumFluorescent Dyesmedicine.diagnostic_testChemistryLipid microdomainFluorescence recovery after photobleachingCell BiologyFluorescenceLipidsKinetics030104 developmental biologyMembraneSpectrometry Fluorescence030220 oncology & carcinogenesisBiophysicsFluorescence Recovery After PhotobleachingHeLa CellsBiochemical and biophysical research communications
researchProduct

A selective inhibitor of the Polo-box domain of Polo-like kinase 1 identified by virtual screening

2018

Graphical abstract

0301 basic medicineLK Polo-like kinasePolo-like kinaseCell cycleIC50 50% inhibition concentrationVirtual drug screeningPLK103 medical and health sciences0302 clinical medicineNeoplasmsTargeted chemotherapylcsh:Science (General)MitosisComputingMethodologies_COMPUTERGRAPHICSCDK cyclin-dependent kinasePBD Polo-box domainPyRxNatural productslcsh:R5-920MultidisciplinaryMicroscale thermophoresisKinaseChemistryCell cycleCell biology030104 developmental biology030220 oncology & carcinogenesisCancer cellOriginal ArticleCAMKK2 calcium/calmodulin-dependent protein kinase kinase 2PC Polo-box caplcsh:Medicine (General)Multipolar spindleslcsh:Q1-390Journal of Advanced Research
researchProduct

Allosteric Cross-Talk among Spike’s Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Huma…

2021

The rapid and relentless emergence of novel highly transmissible SARS-CoV-2 variants, possibly decreasing vaccine efficacy, currently represents a formidable medical and societal challenge. These variants frequently hold mutations on the Spike protein's receptor-binding domain (RBD), which, binding to the angiotensin-converting enzyme 2 (ACE2) receptor, mediates viral entry into host cells. Here, all-atom molecular dynamics simulations and dynamical network theory of the wild-type and mutant RBD/ACE2 adducts disclose that while the N501Y mutation (UK variant) enhances the Spike's binding affinity toward ACE2, the concomitant N501Y, E484K, and K417N mutations (South African variant) aptly ad…

0301 basic medicineLetterMutantAllosteric regulationVirulenceBiologyMolecular Dynamics Simulationmedicine.disease_cause03 medical and health sciences0302 clinical medicineProtein DomainsViral entrymedicineHumansGeneral Materials SciencePhysical and Theoretical ChemistryReceptorchemistry.chemical_classificationGeneticsMutationSARS-CoV-2Antibodies Monoclonal030104 developmental biologyEnzymechemistrySettore CHIM/03 - Chimica Generale E InorganicaMutationSpike Glycoprotein Coronavirusbiology.proteinThermodynamicsAngiotensin-Converting Enzyme 2Antibody030217 neurology & neurosurgeryProtein Binding
researchProduct