Search results for "Doping"

showing 10 items of 801 documents

Effect of annealing temperature on persistent luminescence of Y3Al2Ga3O12:Cr3+ co-doped with Ce3+ and Pr3+

2021

Abstract Y3(Al,Ga)5O12 (YAGG) materials doped with Ce3+, Cr3+ and Pr3+ were synthesized by using a modified Pechini method and subsequently annealed in air at selected temperatures between 900 and 1500 °C. According to X-ray powder diffraction (XRPD) and transmission electron microscopy (TEM) analyses, the particles and size distributions become large and broad, respectively, due to sintering and agglomeration at high annealing temperatures. Based on infrared (FTIR) spectra and calculation of multi-phonon de-excitation probabilities, the high energy O–H vibrations are not causing significant multi-phonon de-excitation of the emitting 5d level of Ce3+ if the annealing temperature is above 90…

ChromiumPhotoluminescenceMaterials sciencePersistent luminescenceAnnealing (metallurgy)GarnetOrganic ChemistryDopingAnalytical chemistryCeriumAnnealing temperatureAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsInorganic ChemistryPersistent luminescenceEnergy transferCharge carrierPhotoluminescence excitationElectrical and Electronic EngineeringPhysical and Theoretical ChemistryLuminescenceSpectroscopyPowder diffractionOptical Materials
researchProduct

ChemInform Abstract: Photoluminescence of Chromium(III)-Doped Silicoaluminophosphate with AFI Structure.

2010

ChromiumPhotoluminescencechemistryDopingchemistry.chemical_elementPhysical chemistryGeneral MedicineChemInform
researchProduct

Frequency and temperature dependence of the electrical conductivity of KTaO3; Li and PbTiO3; La, Cu: Indication of a low temperature polaron mechanism

2008

Abstract Recently, the concept of polarons has again been at the focus of solid-state research, as it can constitute the basis for understanding the high-temperature superconductivity or the colossal magnetoresistance of materials. More than a decade ago there were some indications that polarons play an important role in explaining low temperature maxima in imaginary part of the dielectric constant e ″ ( T ) in ABO3 perovskites. In the present work we report the ac electrical conductivities of KTaO3; Li and PbTiO3; La, Cu and their frequency and temperature dependence. The real part of the complex ac conductivity was found to follow the universal dielectric response σ ′ ∝ ν s . A detailed t…

Colossal magnetoresistanceMaterials science02 engineering and technologyDielectricPolaron01 natural sciencesTunnellingTunnel effectElectrical resistivity and conductivityTantalates0103 physical sciencesElectrical and Electronic Engineering010306 general physicsQuantum tunnellingLow-field transportSuperconductivityCondensed matter physicsPACS: 72.20.Fr; 73.40.Gk; 71.38.−k; 77.84.DyPolaronsDoping[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic Materials[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologyTitanates
researchProduct

Optical absorption induced by UV laser radiation in Ge-doped amorphous silica probed by in situ spectroscopy

2007

We studied the optical absorption induced by 4.7eV pulsed laser radiation on Ge-doped a-SiO2 synthesized by a sol-gel technique. The absorption spectra in the ultraviolet spectral range were measured during and after the end of irradiation with an in situ technique, evidencing the growth of an absorption signal whose profile is characterized by two main peaks near 4.5eV and 5.7eV and whose shape depends on time. Electron spin resonance measurements performed ex situ a few hours after the end of exposure permit to complete the information acquired by optical absorption by detection of the paramagnetic Ge(1) and Ge-E' centers laser-induced in the samples.

Condensed Matter - Materials ScienceMaterials scienceGeAbsorption spectroscopyOptical absorptionDopingAnalytical chemistryMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)RadiationOptical radiationCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter Physicsmedicine.disease_causelaw.inventionParamagnetismUV laserlawsilicamedicineIrradiationAbsorption (electromagnetic radiation)Electron paramagnetic resonanceUltraviolet
researchProduct

UV-Photoinduced Defects In Ge-Doped Optical Fibers

2005

We investigated the effect of continuous-wave (cw) UV laser radiation on single-mode Ge-doped H2- loaded optical fibers. An innovative technique was developed to measure the optical absorption (OA) induced in the samples by irradiation, and to study its dependence from laser fluence. The combined use of the electron spin resonance (ESR) technique allowed the structural identification of several radiation-induced point defects, among which the Ge(1) (GeO4 -) is found to be responsible of induced OA in the investigated spectral region.

Condensed Matter - Materials ScienceMaterials scienceOptical fiberbusiness.industryDopingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)RadiationCondensed Matter - Disordered Systems and Neural NetworksFluenceCrystallographic defectoptical fibers radiation effects radiation-induced attenuationlaw.inventionlawOptoelectronicsIrradiationAbsorption (electromagnetic radiation)businessElectron paramagnetic resonance
researchProduct

Defect-Induced Orbital Polarization and Collapse of Orbital Order in Doped Vanadium Perovskites

2018

We explore mechanisms of orbital order decay in doped Mott insulators $R_{1-x}$(Sr,Ca)$_x$VO$_3$ ($R=\,$Pr,Y,La) caused by charged (Sr,Ca) defects. Our unrestricted Hartree-Fock analysis focuses on the combined effect of random, charged impurities and associated doped holes up to $x=0.5$. The study is based on a generalized multi-band Hubbard model for the relevant vanadium $t_{2g}$ electrons, and includes the long-range (i) Coulomb potentials of defects and (ii) electron-electron interactions. We show that the rotation of occupied $t_{2g}$ orbitals, induced by the electric field of defects, is a very efficient perturbation that largely controls the suppression of orbital order in these com…

Condensed Matter - Materials ScienceMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsHubbard modelMott insulatorDopingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronKinetic energy01 natural sciencesSpectral lineCondensed Matter - Strongly Correlated ElectronsAtomic orbitalSuperexchange0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics
researchProduct

Optical properties of Ge-oxygen defect center embedded in silica films

2007

The photo-luminescence features of Ge-oxygen defect centers in a 100nm thick Ge-doped silica film on a pure silica substrate were investigated by looking at the emission spectra and time decay detected under synchrotron radiation excitation in the 10-300 K temperature range. This center exhibits two luminescence bands centered at 4.3eV and 3.2eV associated with its de-excitation from singlet (S1) and triplet (T1) states, respectively, that are linked by an intersystem crossing process. The comparison with results obtained from a bulk Ge-doped silica sample evidences that the efficiency of the intersystem crossing rate depends on the properties of the matrix embedding the Ge-oxygen defect ce…

Condensed Matter - Materials SciencePhotoluminescenceGermaniumSputteringOptical spectroscopyDefectsAbsorptionLuminescenceGermaniaSilicaDopingMaterials Science (cond-mat.mtrl-sci)FOS: Physical scienceschemistry.chemical_elementGermaniumDisordered Systems and Neural Networks (cond-mat.dis-nn)Atmospheric temperature rangeCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsPhotochemistryMolecular physicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceIntersystem crossingchemistryMaterials ChemistryCeramics and CompositesSinglet stateTriplet stateLuminescence
researchProduct

Strain, doping and electronic transport of large area monolayer MoS2 exfoliated on gold and transferred to an insulating substrate

2021

Gold-assisted mechanical exfoliation currently represents a promising method to separate ultra-large (cm-scale) transition metal dichalcogenides (TMDs) monolayers (1L) with excellent electronic and optical properties from the parent van der Waals (vdW) crystals. The strong interaction between $Au$ and chalcogen atoms is the key to achieve this nearly perfect 1L exfoliation yield. On the other hand, it may affect significantly the doping and strain of 1L TMDs in contact with Au. In this paper, we systematically investigated the morphology, strain, doping, and electrical properties of large area 1L $MoS_{2}$ exfoliated on ultra-flat $Au$ films ($0.16-0.21 nm$ roughness) and finally transferre…

Condensed Matter - Materials Sciencestraingold-assisted exfoliationMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesphotoluminescencedopingconductive atomic force microscopyMoS2Raman
researchProduct

Experimental evidence for a local disorder in pure and doped perovskites

1992

Abstract In the soft mode picture, the ferroelectric phase transitions in most of ABO3 perovskites are triggered by the long wavelength oscillations of the B ions against their oxygen cage. There is now a lot of experimental evidence that this picture is incomplete. An extra contribution has to be included in the dynamical response. This contribution is usually thought to arise from local lattice distorsions; this is what will be called local disorder. A complete understanding of this local disorder requires the experimental determination of the microscopic origin, of the dynamics and spatial extension of the lattice distorsions. A useful way to summarize these requirements is to use the co…

Condensed Matter::Materials SciencePhase transitionMaterials scienceCondensed matter physicsFe dopedLattice (order)DopingSoft modesExperimental DevicesCondensed Matter PhysicsFerroelectricityElectronic Optical and Magnetic MaterialsIonFerroelectrics
researchProduct

Phase transitions of Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)O3ceramics

2001

Abstract The dielectric, elastic and electromechanical properties, electrocaloric effect and thermal expansion of poled and depoled Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)O3 samples are presented to evaluate the nature of polar phases existing in the solid solution above room temperature. The Kittel's free energy expansion is used to explain some essential features of physical properties.

Condensed Matter::Materials SciencePhase transitionMaterials scienceCondensed matter physicsPolingDopingElectrocaloric effectDielectricCondensed Matter PhysicsZirconateThermal expansionElectronic Optical and Magnetic MaterialsSolid solutionFerroelectrics
researchProduct