Search results for "Droni"

showing 10 items of 596 documents

Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

2016

Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

Hadronic interaction[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsCOLLISIONSAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesGeneral Physics and AstronomyCosmic ray01 natural sciences7. Clean energyHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)High Energy Physics - Phenomenology (hep-ph)Observatory0103 physical sciencesCalibrationHigh Energy PhysicsUHE Cosmic Rays010306 general physicsParticle PhysicsCosmic raysGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryEnergyMuon010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaInteraction modelASTROFÍSICAHigh Energy Physics - Phenomenology13. Climate actionExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of hard double-parton interactions inW(???) + 2-jet events at $\sqrt{s}\,=7$ TeV with the ATLAS detector

2013

The production of W bosons in association with two jets in proton–proton collisions at a centre-of-mass energy of √s=7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36 pb[superscript −1], collected with the ATLAS detector at the Large Hadron Collider. The fraction of events arising from double-parton interactions, f[superscript (D) over subscript DP], has been measured through the p[subscript T] balance between the two jets and amounts to f[superscript (D) over subscript DP] = 0.08 ± 0.01 (stat.) ± 0.02 (sys.) for jets with transverse momentum p[subscript T] > 20 GeV and rapidity |y| < 2.8. This corresponds to a …

Hard-partonCiencias FísicasGeneral Physics and AstronomyParton7. Clean energy01 natural sciencesHigh Energy Physics - Experimentlaw.inventionVector bosonScattering//purl.org/becyt/ford/1 [https]law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]w bosonNuclear ExperimentQCBosonddc:539PhysicsLuminosity (scattering theory)Large Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAShard double-parton interactions; ATLAS detectorProbemedicine.anatomical_structureHadronic CollisionsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCCIENCIAS NATURALES Y EXACTASParticle Physics - ExperimentParticle physicsMultiparton InteractionsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]ddc:500.25304-Jet EventsNuclear physicsAtlas (anatomy)0103 physical sciencesmedicineddc:530RapidityHigh Energy Physics010306 general physicsColliderCiencias ExactasCalorimeterScience & TechnologyATLAS detector010308 nuclear & particles physicsMeasurementsHigh Energy Physics::PhenomenologyFísica//purl.org/becyt/ford/1.3 [https]QCDAstronomíaHADRON-HADRON COLLISIONSExperimental High Energy Physicsproton-proton collisionsHigh Energy Physics::ExperimentCollider
researchProduct

"Table 44" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS …

2018

Endcap MS vertex efficiencies (in %) for baryogenesis $\chi \rightarrow \tau\tau\nu$ benchmark samples ($m_{h}=125$ GeV). The vertex reconstruction efficiency is defined as the fraction of simulated LLP decays in the MS fiducial volume that match a reconstructed vertex ($\Delta R(\textrm{LLP,vertex}) = 0.4$) passing the baseline event selection and satisfying the vertex isolation criteria. A vertex is considered matched to a displaced decay if the vertex is within $\Delta R = 0.4$ of the simulated decay position. The MS vertex efficiency is parameterized as a function of the LLP decay position.

Higgs portal baryogenesis13000.0LLPComputer Science::Discrete Mathematics$pp \rightarrow h \rightarrow \chi\chi$displaced hadronic jetsSIG
researchProduct

Gamma rays from cosmic-ray proton scattering in AGN jets: the intra-cluster gas vastly outshines dark matter

2013

Active Galactic Nuclei (AGN) host powerful jets containing high-energy electrons and protons. The astrophysical environment where AGNs and their jets are found is characterized by large concentrations of both dark matter (DM) and intra-cluster medium (ICM) gas. As the high-energy jet particles transverse the DM and the ICM, elastic and inelastic scattering processes generically lead to the production of final-state photons. As first envisioned by Bloom and Wells (1998), and as more recently pointed out by us and others, the scattering of electrons off of DM could lead to a potentially detectable gamma-ray signal, with the parton-level contribution from protons offering dimmer perspectives. …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusScatteringAstrophysics::High Energy Astrophysical PhenomenaDark matterGamma rayFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsElectronAstrophysicsInelastic scatteringHadronizationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Determination of the Chiral Couplings L10 and C87 from Semileptonic τ Decays

2008

Using recent precise hadronic tau-decay data on the V-A spectral function, and general properties of QCD such as analyticity, the operator product expansion and chiral perturbation theory, we get accurate values for the QCD chiral order parameters L_10^r(M_rho) and C_87^r(M_rho). These two low-energy constants appear at order p^4 and p^6, respectively, in the chiral perturbation theory expansion of the V-A correlator. At order p^4 we obtain L_10^r(M_rho) = -(5.22\pm 0.06)10^{-3}. Including in the analysis the two-loop (order p^6) contributions, we get L_10^r(M_rho) = -(4.06\pm 0.39)10^{-3} and C_87^r(M_rho) = (4.89\pm 0.19)10^{-3}GeV^{-2}. In the SU(2) chiral effective theory, the correspon…

High Energy Physics - Lattice (hep-lat)Spectral functionsFOS: Physical sciencesFísicaPerturbation theoryLow-energy constantsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeStrange quark massQCD predictionsHigh Energy Physics::ExperimentUs-vertical-barHadronic width
researchProduct

Space-like (vs. time-like) collinear limits in QCD: Is factorization violated?

2012

We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e.g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum a…

High Energy Physics - TheoryNLO COMPUTATIONSNuclear and High Energy PhysicsHADRONIC COLLIDERSCiencias FísicasFOS: Physical sciencesPartonSpace (mathematics)01 natural sciences//purl.org/becyt/ford/1 [https]MomentumHigh Energy Physics - Phenomenology (hep-ph)Factorization0103 physical sciences010306 general physicsMathematical physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsFísicaCharge (physics)//purl.org/becyt/ford/1.3 [https]Scattering amplitudeAstronomíaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Gravitational singularityCIENCIAS NATURALES Y EXACTAS
researchProduct

Double collinear splitting amplitudes at next-to-leading order

2013

We compute the next-to-leading order (NLO) QCD corrections to the $1 \to 2$ splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.

High Energy Physics - TheoryNLO COMPUTATIONSNuclear and High Energy PhysicsParticle physicsHADRONIC COLLIDERSCiencias FísicasFOS: Physical sciencesContext (language use)01 natural sciences//purl.org/becyt/ford/1 [https]Dimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)Consistency (statistics)0103 physical sciencesLimit (mathematics)010306 general physicsMathematical physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísica//purl.org/becyt/ford/1.3 [https]Scattering amplitudeAstronomíaHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Theory (hep-th)Cover (topology)CIENCIAS NATURALES Y EXACTASJournal of High Energy Physics
researchProduct

Measurement of CP asymmetry in D 0 → K - K + and D 0 → π - πdecays

2014

Time-integrated $CP$ asymmetries in $D^0$ decays to the final states $K^- K^+$ and $\pi^- \pi^+$ are measured using proton-proton collisions corresponding to $3\mathrm{\,fb}^{-1}$ of integrated luminosity collected at centre-of-mass energies of $7\mathrm{\,Te\kern -0.1em V}$ and $8\mathrm{\,Te\kern -0.1em V}$. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in $CP$ asymmetries between the two final states is measured to be \begin{align} \Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(\pi^-\pi^+) = (+0.14 \pm 0.16\mathrm{\,(stat)} \pm 0.08\mathrm{\,(syst)})\% \ . \nonu…

High Energy Physics::Lattice14.40.Lb01 natural sciencesLuminositySettore FIS/04 - Fisica Nucleare e SubnucleareFlavor physicsABSORPTIONPhysics::Chemical PhysicsNuclear ExperimentQCmedia_commonCharm physicsPhysicsHadronic decays of charmed mesonCharm physics; CP violation; Flavor physics; Hadron-Hadron ScatteringParticle physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronCharge conjugation parity time reversal and other discrete symmetrieFIS/01 - FISICA SPERIMENTALECP violation13.25.FtSCATTERING-AMPLITUDEFísica nuclearLHCParticle physicsCharm physicNuclear and High Energy PhysicsMesonmedia_common.quotation_subjectLHCb - Abteilung HofmannHadronsAsymmetryREGENERATIONTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYSEARCH0103 physical sciencesPiSCATTERINGSCATTERING-AMPLITUDE; REGENERATION; ABSORPTION; SEARCHSDG 7 - Affordable and Clean Energy010306 general physicsLarge Hadron Collider (France and Switzerland)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyMuonHadron-Hadron Scattering010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGran Col·lisionador d'HadronsCharge (physics)LHCbFlavor physic11.30.ErHigh Energy Physics::ExperimentFísica de partículesExperiments13.85.NiCharmed mesons (|C|>0 B=0)FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
researchProduct

Multi-boson block factorization of fermions

2017

The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g-2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the g…

High Energy Physics::Latticeaction: local01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Vacuum polarizationcorrelation functionQuantum Chromodynamics Lattice gauge theory Computational PhysicsMonte CarloBosonPhysicsform factorPhysicsHigh Energy Physics - Lattice (hep-lat)lattice field theoryPropagatorpropagator [quark]hep-phParticle Physics - Latticestatistical [error]Lattice QCDFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - Phenomenologyerror: statisticalquark: factorizationquark: propagatorMonte Carlo integrationQuarkParticle physicsQC1-999fermion: determinantdeterminant [fermion]FOS: Physical scienceshep-latbaryon: massHigh Energy Physics - LatticeFactorization0103 physical sciencesmagnetic moment [muon]hadronic [vacuum polarization]010306 general physicsnumerical calculationsParticle Physics - Phenomenologymuon: magnetic moment010308 nuclear & particles physicsvacuum polarization: hadronicHigh Energy Physics::Phenomenologyphoton photon: scatteringB: decaylocal [action]Fermiondecay [B]mass [baryon]scattering [photon photon]gauge field theoryHigh Energy Physics::Experimentfactorization [quark]
researchProduct

"Table 95" of "Measurements of $t\bar{t}$ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in $pp$ coll…

2019

$|{\cos{\theta}^{\star}}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} &gt; 500~$GeV, $p_T^{t,2} &gt; 350~$GeV.

High Energy Physics::Phenomenology$|{\cos{\theta}^{\star}}|$High Energy Physics::Experimentparton levelPP --&gt;$t\bar{t}$ ---&gt; all-hadronicNuclear Experiment13000
researchProduct