Search results for "Dynamic"
showing 10 items of 12329 documents
High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method
2018
We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a three-dimensional lid-driven cavity flow are found to be stable up to the unprecedented Reynolds number $\mathrm{Re}=5\ifmmode\times\else\texttimes\fi{}{10}^{4}$ for this setup. Excellent agreement with energy balance equations, computational and experimental results are shown. We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of turbulent production.
Microstructural evaluation and recommendations for face masks in community use to reduce the transmission of respiratory infectious diseases
2022
Funding Information: A.K., H.Y. and R.J. also acknowledges the funding through Academy of Finland BESIMAL (Decision No. 334197) and Aalto University, Department of Communications and Networking. This work has also received funding in part from the EPSRC UK (grant number EP/R012091/1). A.K. would also like to thank Mr. Volkan Kaplan for the fruitful discussions in the early concept generation. Publisher Copyright: © 2022 The Author(s) Background and Objective: Recommendations for the use of face masks to prevent and protect against the aerosols (≤5µm) and respiratory droplet particles (≥5µm), which can carry and transmit respiratory infections including severe acute respiratory syndrome coro…
Designing a graphics processing unit accelerated petaflop capable lattice Boltzmann solver: Read aligned data layouts and asynchronous communication
2016
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently, general-purpose graphics processing units (GPUs) have become available as high-performance computing resources at large scale. We report on designing and implementing a lattice Boltzmann solver for multi-GPU systems that achieves 1.79 PFLOPS performance on 16,384 GPUs. To achieve this performance, we introduce a GPU compatible version of the so-called bundle data layout and eliminate the halo sites in order to improve data access alignment. Furthermore, we make use of the possibility to overlap data transfer between the host central processing unit and the device GPU with com…
Damping Provision by Different Virtual Synchronous Machine Schemes
2020
The adoption of virtual synchronous machine (VSM) schemes for the control of power converters is gaining more and more attention both in academia and industry. The VSM control strategies fall into the category of grid-forming converter controls, and they are intended for a range of different applications, providing specific services and different kinds of support to the grid. The paper investigates the possibility of damping provision to the system by VSM power converters. Different schemes are considered and compared, showing the opportunity of the investigated solutions through combined modal and time domain analyses. A specific modification of the power synchronization loop is recognized…
Molecular Basis of SARS-CoV-2 Nsp1-Induced Immune Translational Shutdown as Revealed by All-Atom Simulations.
2021
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic represents the most severe global health crisis in modern human history. One of the major SARS-CoV-2 virulence factors is nonstructural protein 1 (Nsp1), which, outcompeting with the binding of host mRNA to the human ribosome, triggers a translation shutdown of the host immune system. Here, microsecond-long all-atom simulations of the C-terminal portion of the SARS-CoV-2/SARS-CoV Nsp1 in complex with the 40S ribosome disclose that SARS-CoV-2 Nsp1 has evolved from its SARS-CoV ortholog to more effectively hijack the ribosome by undergoing a critical switch of Q/E158 and E/Q159 residues that perfects Nsp1's interactions…
Game-Theoretic Approach to Hölder Regularity for PDEs Involving Eigenvalues of the Hessian
2021
AbstractWe prove a local Hölder estimate for any exponent $0<\delta <\frac {1}{2}$ 0 < δ < 1 2 for solutions of the dynamic programming principle $$ \begin{array}{@{}rcl@{}} u^{\varepsilon} (x) = \sum\limits_{j=1}^{n} \alpha_{j} \underset{\dim(S)=j}{\inf} \underset{|v|=1}{\underset{v\in S}{\sup}} \frac{u^{\varepsilon} (x + \varepsilon v) + u^{\varepsilon} (x - \varepsilon v)}{2} \end{array} $$ u ε ( x ) = ∑ j = 1 n α j inf dim ( S ) = j sup v ∈ S | v | = 1 u ε ( x + ε v ) + u ε ( x − ε v ) 2 with α1,αn > 0 and α2,⋯ ,αn− 1 ≥ 0. The proof is based on a new coupling idea from game theory. As an application, we get the same regularity estimate for viscosity solutions of the PDE $…
Regularity for nonlinear stochastic games
2015
We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding partial differential equations. peerReviewed
The ALICE experiment at the CERN LHC
2008
Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002
INCIDENZA SULL’ANALISI DI RISCHIO DELLE MODALITÁ DI MISURA DEI SOIL GAS: IL CASO DI UN S.I.N. SICILIANO
2020
Il monitoraggio delle matrici aeriformi sta assumendo importanza crescente nell’ambito dei procedimenti di bonifica di siti contaminati, con riferimento sia all’esecuzione delle analisi di rischio, sia alla conseguente progettazione degli interventi di risanamento. L’utilizzo di misure dirette di campo si rivela di notevole interesse per la verifica di quelle indirette, ottenute con gli algoritmi implementati nei modelli matematici utilizzati per l’analisi di rischio. Obiettivo del lavoro presentato nella nota è stato quello di valutare l’influenza di misure dirette di soil gas e di flussi emissivi sull’analisi di rischio sanitaria. Come caso studio, si è considerato un S.I.N. nel territori…
Ultraviolet imaging of volcanic plumes: A new paradigm in volcanology
2017
Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes than achievable hitherto. To date, this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub-disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at â1 Hz, expeditin…