Search results for "Dynamical Systems"
showing 10 items of 476 documents
Language in Complexity. The Emerging Meaning
2017
This contributed volume explores the achievements gained and the remaining puzzling questions by applying dynamical systems theory to the linguistic inquiry. In particular the book is divided into three parts, each one addressing of the following topics: a) Facing complexity in the right way: mathematics and complexity; b) Complexity and theory of language; c) From empirical observation to formal models: investigations of specifici linguistic phenomena, like enunciation, deixis, or the meaning of the metaphorical phrases.
Stochastic analysis of dynamical systems with delayed control forces
2006
Abstract Reduction of structural vibration in actively controlled dynamical system is usually performed by means of convenient control forces dependent of the dynamic response. In this paper the existent studies will be extended to dynamical systems subjected to non-normal delta-correlated random process with delayed control forces. Taylor series expansion of the control forces has been introduced and the statistics of the dynamical response have been obtained by means of the extended Ito differential rule. Numerical application provided shows the capabilities of the proposed method to analyze stochastic dynamic systems with delayed actions under delta-correlated process contrasting statist…
Statistical geometric affinity in human brain electric activity
2007
10 pages, 9 figures.-- PACS nrs.: 87.19.La; 05.45.Tp.-- ISI Article Identifier: 000246890100105
A short survey on nonlinear models of the classic Costas loop: rigorous derivation and limitations of the classic analysis
2015
Rigorous nonlinear analysis of the physical model of Costas loop --- a classic phase-locked loop (PLL) based circuit for carrier recovery, is a challenging task. Thus for its analysis, simplified mathematical models and numerical simulation are widely used. In this work a short survey on nonlinear models of the BPSK Costas loop, used for pre-design and post-design analysis, is presented. Their rigorous derivation and limitations of classic analysis are discussed. It is shown that the use of simplified mathematical models, and the application of non rigorous methods of analysis (e.g., simulation and linearization) may lead to wrong conclusions concerning the performance of the Costas loop ph…
Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range co…
2017
Entropy measures are widely applied to quantify the complexity of dynamical systems in diverse fields. However, the practical application of entropy methods is challenging, due to the variety of entropy measures and estimators and the complexity of real-world time series, including nonstationarities and long-range correlations (LRC). We conduct a systematic study on the performance, bias, and limitations of three basic measures (entropy, conditional entropy, information storage) and three traditionally used estimators (linear, kernel, nearest neighbor). We investigate the dependence of entropy measures on estimator- and process-specific parameters, and we show the effects of three types of …
Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters
2020
[EN] In spite of its simple formulation via a nonlinear differential equation, the Gompertz model has been widely applied to describe the dynamics of biological and biophysical parts of complex systems (growth of living organisms, number of bacteria, volume of infected cells, etc.). Its parameters or coefficients and the initial condition represent biological quantities (usually, rates and number of individual/particles, respectively) whose nature is random rather than deterministic. In this paper, we present a complete uncertainty quantification analysis of the randomized Gomperz model via the computation of an explicit expression to the first probability density function of its solution s…
Three viewpoints on the integral geometry of foliations
1999
We deal with three different problems of the multidimensional integral geometry of foliations. First, we establish asymptotic formulas for integrals of powers of curvature of foliations obtained by intersecting a foliation by affine planes. Then we prove an integral formula for surfaces of contact of an affine hyperplane with a foliation. Finally, we obtain a conformally invariant integral-geometric formula for a foliation in three-dimensional space.
A constructive theory of shape
2021
We formulate a theory of shape valid for objects of arbitrary dimension whose contours are path connected. We apply this theory to the design and modeling of viable trajectories of complex dynamical systems. Infinite families of qualitatively similar shapes are constructed giving as input a finite ordered set of characteristic points (landmarks) and the value of a continuous parameter $\kappa \in (0,\infty)$. We prove that all shapes belonging to the same family are located within the convex hull of the landmarks. The theory is constructive in the sense that it provides a systematic means to build a mathematical model for any shape taken from the physical world. We illustrate this with a va…
Scaling behaviour of non-hyperbolic coupled map lattices
2006
Coupled map lattices of non-hyperbolic local maps arise naturally in many physical situations described by discretised reaction diffusion equations or discretised scalar field theories. As a prototype for these types of lattice dynamical systems we study diffusively coupled Tchebyscheff maps of N-th order which exhibit strongest possible chaotic behaviour for small coupling constants a. We prove that the expectations of arbitrary observables scale with \sqrt{a} in the low-coupling limit, contrasting the hyperbolic case which is known to scale with a. Moreover we prove that there are log-periodic oscillations of period \log N^2 modulating the \sqrt{a}-dependence of a given expectation value.…
Universality of the rho-meson coupling in effective field theory
2004
It is shown that both the universal coupling of the rho-meson and the Kawarabayashi-Suzuki-Riadzuddin-Fayyazuddin expression for the magnitude of its coupling constant follow from the requirement that chiral perturbation theory of pions, nucleons, and rho-mesons is a consistent effective field theory. The prerequisite of the derivation is that all ultraviolet divergences can be absorbed in the redefinition of fields and the available parameters of the most general effective Lagrangian.