Search results for "E2F"

showing 10 items of 37 documents

ER+ Breast Cancers Resistant to Prolonged Neoadjuvant Letrozole Exhibit an E2F4 Transcriptional Program Sensitive to CDK4/6 Inhibitors

2018

AbstractPurpose: This study aimed to identify biomarkers of resistance to endocrine therapy in estrogen receptor–positive (ER+) breast cancers treated with prolonged neoadjuvant letrozole.Experimental Design: We performed targeted DNA and RNA sequencing in 68 ER+ breast cancers from patients treated with preoperative letrozole (median, 7 months).Results: Twenty-four tumors (35%) exhibited a PEPI score ≥4 and/or recurred after a median of 58 months and were considered endocrine resistant. Integration of the 47 most upregulated genes (log FC > 1, FDR < 0.03) in letrozole-resistant tumors with transcription-binding data showed significant overlap with 20 E2F4-regulated genes (P =…

0301 basic medicineCancer ResearchBreast NeoplasmsE2F4 Transcription FactorArticle03 medical and health sciences0302 clinical medicineText miningDownregulation and upregulationCell Line TumorBiomarkers TumormedicineHumansEndocrine systemProtein Kinase InhibitorsE2F4GeneAgedCell ProliferationAged 80 and overAromatase Inhibitorsbusiness.industryGene Expression ProfilingLetrozoleEndocrine therapyComputational BiologyMiddle AgedEMTREE drug terms: aromatase inhibitorcyclin dependent kinase 4cyclin dependent kinase 6cyclin dependent kinase inhibitorfulvestrantletrozolepaclitaxelpalbociclibtranscription factor E2F4estrogen receptorletrozoleprotein kinase inhibitortranscription factor E2F4transcriptometumor marker030104 developmental biologyReceptors EstrogenOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisLetrozoleMutationRetreatmentCancer researchFemaleTranscriptomebusinessmedicine.drug
researchProduct

Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation

2017

IF 3.226; International audience; Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly…

0301 basic medicineProgrammed cell deathReviewubiquitinationCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinAnimalsHumansE2F1Physical and Theoretical Chemistry[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologylcsh:QH301-705.5Molecular BiologyTranscription factorSpectroscopybiologyCell growthOrganic ChemistryE2F1 Transcription FactorGeneral MedicineCell cycleComputer Science ApplicationsCell biology030104 developmental biologyE2F1lcsh:Biology (General)lcsh:QD1-999biology.proteinDNA damagecell cycleE2F1 Transcription FactorIntracellularInternational Journal of Molecular Sciences
researchProduct

E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death

2018

International audience; E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.

0301 basic medicineProgrammed cell deathTranscription Geneticbcl-X ProteinRegulatorBcl-xL[SDV.CAN]Life Sciences [q-bio]/CancerBCL-xL mobilityMitochondrionBiochemistrylaw.invention[ SDV.CAN ] Life Sciences [q-bio]/CancerE2F1 Subject Category Autophagy & Cell Death03 medical and health sciences[SDV.CAN] Life Sciences [q-bio]/CancerlawBCL-2 familyCell Line TumorGeneticsJournal ArticleHumansE2F1Molecular BiologyCell DeathbiologyManchester Cancer Research CentreEffectorChemistryResearchInstitutes_Networks_Beacons/mcrcScientific ReportsapoptosisSubcellular localizationMitochondriaCell biologyProtein Transportbcl-2 Homologous Antagonist-Killer Protein030104 developmental biologyGene Expression RegulationProto-Oncogene Proteins c-bcl-2biology.proteinSuppressorbiological phenomena cell phenomena and immunityExtracellular SpaceE2F1 Transcription FactorProtein Binding
researchProduct

2017

AbstractThe E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or …

0301 basic medicinechemistry.chemical_classificationCancer ResearchDNA ligasebiologyDNA damageImmunologyCyclin ACell BiologyCell cycleUbiquitin ligase03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biologyBiochemistryUbiquitinchemistrybiology.proteinbiological phenomena cell phenomena and immunityE2FS phaseCell Death and Disease
researchProduct

2018

The cellular inhibitor of apoptosis 1 (cIAP1) is an E3-ubiquitin ligase that regulates cell signaling pathways involved in fundamental cellular processes including cell death, cell proliferation, cell differentiation and inflammation. It recruits ubiquitination substrates thanks to the presence of three baculoviral IAP repeat (BIR) domains at its N-terminal extremity. We previously demonstrated that cIAP1 promoted the ubiquitination of the E2 factor 1 (E2F1) transcription factor. Moreover, we showed that cIAP1 was required for E2F1 stabilization during the S phase of cell cycle and in response to DNA damage. Here, we report that E2F1 binds within the cIAP1 BIR3 domain. The BIR3 contains a s…

0301 basic medicinechemistry.chemical_classificationendocrine systemDNA ligaseMultidisciplinarybiologyChromatin bindingPeptide bindingInhibitor of apoptosisChromatinCell biology03 medical and health sciences030104 developmental biology0302 clinical medicinechemistryUbiquitin030220 oncology & carcinogenesisbiology.proteinE2F1biological phenomena cell phenomena and immunityTranscription factorPLOS ONE
researchProduct

Role of p27Kip1 as a transcriptional regulator

2018

The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA proc…

0301 basic medicinep27Kip1Review03 medical and health sciencesTranscriptional regulationCyclin-dependent kinaseTranscription (biology)Gene expressionTranscriptional regulationcancertranscriptional regulationNeurodegenerationCàncerTranscription factorE2F4CancerbiologyChemistryMalalties neurodegenerativesneurodegenerationNeurodegenerative DiseasesChIP-on-chipExpressió gènicaCell biologyChromatin030104 developmental biologyOncologybiology.proteinGene expressionOncotarget
researchProduct

p27Kip1 regulates alpha-synuclein expression

2018

Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, in…

0301 basic medicinep27Kip1[SDV]Life Sciences [q-bio]03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCyclin-dependent kinaseTranscriptional regulationalpha synucleinAlpha synucleinPsychological repressionE2F4Alpha-synucleinSynucleinopathiesbiologyPromoterEnzyme inhibitorsMolecular biologyExpressió gènica3. Good healthnervous system diseases030104 developmental biologyOncologychemistryInhibidors enzimàticsnervous systemE2F4biology.proteinGene expressionTranscription Factor E2F4transcriptionp21Cip1Transcription030217 neurology & neurosurgeryResearch Paper
researchProduct

Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system

2015

Small interfering RNAs (siRNAs) have the potential to be of therapeutic value for many human diseases. So far, however, a serious obstacle to their therapeutic use is represented by the absence of appropriate delivery systems able to protect them from degradation and to allow an efficient cellular uptake. In this work we developed a siRNA delivery system based on inulin (Inu), an abundant and natural polysaccharide. Inu was functionalized via the conjugation with diethylenetriamine (DETA) residues to form the complex Inu-DETA. We studied the size, surface charge and the shape of the Inu-DETA/siRNA complexes; additionally, the cytotoxicity, the silencing efficacy and the cell uptake-mechanis…

3003Small interfering RNAJHH6CellPharmaceutical ScienceEndocytosisCell LineIn vivoCell Line TumormedicinePolyaminesGene silencingHumansMicropinocytosisRNA Small InterferingCytotoxicityChemistry16HBEInulinEndocytosisDiethylenetriamine (DETA)Cell biologyInu-DETA copolymermedicine.anatomical_structureBiochemistryCytoplasmSettore CHIM/09 - Farmaceutico Tecnologico ApplicativosiRNA16HBE; Diethylenetriamine (DETA); Inu-DETA copolymer; Inulin; JHH6; siRNA; 3003E2F1 Transcription Factor
researchProduct

Screening for Autoantibodies to Tissue Transglutaminase Reveals a Low Prevalence of Celiac Disease in Blood Donors with Cryptogenic Hypertransaminase…

2001

Patients with chronic cryptogenic hypertransaminasemia are at high risk of developing celiac disease (CD). In fact, among the various serological disorders, CD patients at onset frequently present hypertransaminasemia. In this study, we evaluated usefulness and reliability of the new test for antitissue transglutaminase (tTG) in screening for CD as well as in estimating the prevalence of CD in a population of blood donors presenting unexplained hypertransaminasemia at donation. Controls were 180 consecutive healthy donors without hypertransaminasemia and 20 CD patients with known antiendomysial antibody (EmA) positivity. Out of 22,204 blood donors over a period of 2 years, we found 258 subj…

AdultMaleBlood donormedicine.medical_specialtyTissue transglutaminasePopulationE2F6 Transcription FactorBlood DonorsEnzyme-Linked Immunosorbent AssaySensitivity and SpecificityGastroenterologyCoeliac diseaseSerologyIntestinal mucosaInternal medicineImmunopathologyBiopsyPrevalencemedicineHumansCeliac diseaseIntestinal MucosaFluorescent Antibody Technique IndirecteducationTransaminasesAutoantibodieseducation.field_of_studyTransglutaminasesbiologymedicine.diagnostic_testbusiness.industryGastroenterologyAutoantibodyReproducibility of ResultsMiddle Agedmedicine.diseaseTransglutaminaseRepressor ProteinsImmunologybiology.proteinFemalebusinessTranscription FactorsDigestion
researchProduct

JAK3/STAT5/6 Pathway Alterations Are Associated with Immune Deviation in CD8+ T Cells in Renal Cell Carcinoma Patients

2010

To investigate the molecular mechanisms underlying altered T cell response in renal cell carcinoma (RCC) patients, we compared autologous and allogeneic CD8(+) T cell responses against RCC line from RCC patients and their HLA-matched donors, using mixed lymphocyte/tumor cell cultures (MLTCs). In addition, we analyzed the expression of molecules associated with cell cycle regulation. Autologous MLTC responder CD8(+) T cells showed cytotoxic activity against RCC cell lines; however the analysis of the distribution of CD8(+) T-cell subsets revealed that allogenic counterparts mediate superior antitumor efficacy. In RCC patients, a decreased proliferative response to tumor, associated with defe…

Article SubjectCell Survivallcsh:Biotechnologylcsh:MedicineEnzyme-Linked Immunosorbent AssayE2F4 Transcription FactorCD8-Positive T-Lymphocytesurologic and male genital diseaseslcsh:TP248.13-248.65Chromium IsotopesSTAT5 Transcription FactorTumor Cells CulturedHumansCarcinoma Renal CellInhibitor of Differentiation Protein 2Microscopy Confocallcsh:RCell CycleIntracellular Signaling Peptides and ProteinsJanus Kinase 3Flow Cytometryfemale genital diseases and pregnancy complicationsKidney NeoplasmsGene Expression Regulation NeoplasticCase-Control StudiesLymphocyte Culture Test MixedSTAT6 Transcription FactorCyclin-Dependent Kinase Inhibitor p27Research ArticleSignal TransductionJournal of Biomedicine and Biotechnology
researchProduct