Search results for "ECL"
showing 10 items of 1262 documents
Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidati…
2019
Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregu…
The therapeutic potential of inorganic polyphosphate: A versatile physiological polymer to control coronavirus disease (COVID-19).
2021
Rationale: The pandemic caused by the novel coronavirus SARS-CoV-2 is advancing rapidly. In particular, the number of severe courses of the disease is still dramatically high. An efficient drug therapy that helps to improve significantly the fatal combination of damages in the airway epithelia, in the extensive pulmonary microvascularization and finally multiorgan failure, is missing. The physiological, inorganic polymer, polyphosphate (polyP) is a molecule which could prevent the initial phase of the virus life cycle, the attachment of the virus to the target cells, and improve the epithelial integrity as well as the mucus barrier. Results: Surprisingly, polyP matches perfectly with the ca…
Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury
2017
Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify…
Drug metabolism by cultured human hepatocytes: how far are we from the in vivo reality?
2004
The investigation of metabolism is an important milestone in the course of drug development. Drug metabolism is a determinant of drug pharmacokinetics variability in human beings. Fundamental to this are phenotypic differences, as well as genotypic differences, in the expression of the enzymes involved in drug metabolism. Genotypic variability is easy to identify by means of polymerase chain reaction-based or DNA chip-based methods, whereas phenotypic variability requires direct measurement of enzyme activities in liver, or, indirectly, measurement of the rate of metabolism of a given compound in vivo. There is a great deal of phenotypic variability in human beings, only a minor part being…
Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis
2016
Only a few in vitro assays have been proposed to evaluate the steatotic potential of new drugs. The present study examines the utility of HepaRG cells as a cell-based assay system for screening drug-induced liver steatosis. A high-content screening assay was run to evaluate multiple toxicity-related cell parameters in HepaRG cells exposed to 28 compounds, including drugs reported to cause steatosis through different mechanisms and non-steatotic compounds. Lipid content was the most sensitive parameter for all the steatotic drugs, whereas no effects on lipid levels were produced by non-steatotic compounds. Apart from fat accumulation, increased ROS production and altered mitochondrial membra…
Harnessing the potential of noninvasive in vivo preclinical imaging of the immune system: challenges and prospects.
2016
Preclinical imaging has become a powerful method for investigation of in vivo processes such as pharmacokinetics of therapeutic substances and visualization of physiologic and pathophysiological mechanisms. These are important aspects to understand diseases and develop strategies to modify their progression with pharmacologic interventions. One promising intervention is the application of specifically tailored nanoscale particles that modulate the immune system to generate a tumor targeting immune response. In this complex interaction between immunomodulatory therapies, the immune system and malignant disease, imaging methods are expected to play a key role on the way to generate new thera…
Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations.
2017
We present a new approach that incorporates flexibility based on extensive MD simulations of protein-ligand complexes into structure-based pharmacophore modeling and virtual screening. The approach uses the multiple coordinate sets saved during the MD simulations and generates for each frame a pharmacophore model. Pharmacophore models with the same pharmacophore features are pooled. In this way the high number of pharmacophore models that results from the MD simulation is reduced to only a few hundred representative pharmacophore models. Virtual screening runs are performed with every representative pharmacophore model; the screening results are combined and rescored to generate a single hi…
Deciphering Alzheimer’s Disease Pathogenic Pathway: Role of Chronic Brain Hypoperfusion on p-Tau and mTOR
2021
This review examines new biomolecular findings that lend support to the hemodynamic role played by chronic brain hypoperfusion (CBH) in driving a pathway to Alzheimer’s disease (AD). CBH is a common clinical feature of AD and the current topic of intense investigation in AD models. CBH is also the basis for the vascular hypothesis of AD which we originally proposed in 1993. New biomolecular findings reveal the interplay of CBH in increasing tau phosphorylation (p-Tau) in the hippocampus and cortex of AD mice, damaging fast axonal transport, increasing signaling of mammalian target of rapamycin (mTOR), impairing learning-memory function, and promoting the formation of neurofibrillary tangles…
Predicting drug-induced cholestasis: preclinical models.
2018
In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and ca…
Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes
2018
Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal muscular atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5′ splicing site of E7. A small-molecule TSL2-binding compound, homocarbonyltopsentin (PK4C9), was identified that increases E7 splicing to therapeutic levels and rescues downstream molecular alterations in SMA cells. High-resolution NMR combined with molecular modelling revealed that PK4C9 binds to pentaloop conformati…