Search results for "EFF"

showing 10 items of 13980 documents

Band gap of corundumlike α−Ga2O3 determined by absorption and ellipsometry

2017

The electronic structure near the band gap of the corundumlike $\ensuremath{\alpha}$ phase of ${\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$ has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400--190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which y…

010302 applied physicsMaterials scienceValence (chemistry)Physics and Astronomy (miscellaneous)Band gap02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologymedicine.disease_cause01 natural sciencesMolecular physicsGaussian broadeningEllipsometryAttenuation coefficient0103 physical sciencesmedicineGeneral Materials ScienceThin film0210 nano-technologyUltravioletPhysical Review Materials
researchProduct

Power efficiency improvements with the radio frequency H− ion source

2016

CW 13.56 MHz radio frequency-driven H(-) ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H(-) beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter field has been replaced with a new front plate with permanent magnet filter field. The new structure is more open and enables a higher flux of ro-vibrationally excited molecules towards the plasma electrode and provides a better control of the potential near the extraction due to a stronger separation …

010302 applied physicsMaterials scienceta114ta213Electromagnetbusiness.industryRF power amplifierCyclotronPlasma01 natural sciencesIon sourcelaw.inventionion sourceslawMagnet0103 physical sciencesOptoelectronicsRadio frequencypower efficiency010306 general physicsbusinessInstrumentationElectrical efficiencyReview of Scientific Instruments
researchProduct

Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry

2000

A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…

010302 applied physicsMicroprobeMaterials scienceIon beamAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyHeterojunction02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyRutherford backscattering spectrometry01 natural sciencesSpectral lineCondensed Matter::Materials Science0103 physical sciencesSurface roughness0210 nano-technologySpectroscopyJournal of Applied Physics
researchProduct

Study of the multipactor phenomenon using a full-wave integral equation technique

2017

Abstract Multipactor effect is a well-known phenomenon of RF breakdown in satellite payloads which degrades components, generates undesirable harmonics, contributes to power dissipation and increases noise in communications. Traditionally, multipactor has been investigated with the aim of obtaining the so-called multipactor threshold voltage, or to present different multipaction detection methods. However, very little attention has been focused on analysing this phenomenon using a multimodal approach. The main goal of this work is to analyse the interaction between a multipactor current and a realistic microwave cavity by means of a rigorous and accurate formulation. For the first time to t…

010302 applied physicsMultipactor effect020206 networking & telecommunications02 engineering and technologyDissipation01 natural sciencesNoise (electronics)Integral equationAdmittance parametersHarmonics0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectronic engineeringElectrical and Electronic EngineeringRepresentation (mathematics)Microwave cavityMathematicsAEU - International Journal of Electronics and Communications
researchProduct

A New Multipactor Effect Model for Dielectric-Loaded Rectangular Waveguides

2019

Multipactor is an electron discharge that may appear in particle accelerators and microwave devices such as filters, multiplexers, and RF satellite payloads in satellite on-board equipment under vacuum conditions. When some resonance conditions are satisfied, secondary electrons get synchronized with the RF fields, and the electron population inside the device grows exponentially leading to a multipactor discharge. This multipactor discharge has some negative effects that degrade the device performance: increase of signal noise and reflected power, heating of the device walls, outgassing, detuning of resonant cavities, and even the partial or total destruction of the component. The main aim…

010302 applied physicsMultipactor effectMaterials sciencebusiness.industryParticle acceleratorElectron01 natural sciencesSignalSecondary electrons010305 fluids & plasmaslaw.inventionOutgassingOpticslaw0103 physical sciencesbusinessNoise (radio)Microwave2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
researchProduct

Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models

2018

[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.

010302 applied physicsMultipactor effectNuclear and High Energy PhysicsWaveguide (electromagnetism)Materials scienceDielectricCondensed Matter Physics01 natural sciencesSecondary electrons010305 fluids & plasmasCharacterization (materials science)Computational physicsSecondary electron emission (SEE)Secondary emission0103 physical sciencesRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEquivalent circuitMultipactor effectSecondary electron yield
researchProduct

Peculiarities of the diffusion-controlled radiation defect accumulation kinetics under high fluencies

2020

We are grateful to A. Lushchik and E. Shablonin for numerous and valuable discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceDiffusionKineticsThermodynamicsFluence effects02 engineering and technologyRadiation021001 nanoscience & nanotechnologyAbstract theoryRadiation defects01 natural sciencesFluenceAccumulation kineticsDiffusionChemical kinetics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]0210 nano-technologySaturation (chemistry)InstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Phase transitions in Na0.5Bi0.5TiO3-(Sr0.7Bi0.2)TiO3-PbTiO3 solid solutions

2016

ABSTRACTIncreasing of Sr0.7Bi0.2TiO3 concentration in Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 solid solutions causes increasing of Bi/Na relation and vacancies in the A-site of perovskite structure. In temperature dependence of dielectric permittivity, such a change of composition is reflected by transforming of the frequency-dependent shoulder into a maximum characteristic for relaxor ferroelectrics and diminishing of the frequency-independent maximum characteristic for Na0.5Bi0.5TiO3. Here changes in behavior of dielectric permittivity and polarization are studied if PbTiO3 is added in a certain concentration range of Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 solid solutions. Changes of the characteristic temp…

010302 applied physicsPhase transitionRange (particle radiation)Materials scienceCondensed matter physicsDielectric permittivity02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materials0103 physical sciencesElectrocaloric effect0210 nano-technologyPolarization (electrochemistry)Solid solutionFerroelectrics
researchProduct

Dielectric properties of potassium–sodium niobate ceramics at low frequencies

2016

ABSTRACTA study of the effects of ageing history on the electrical properties of lead-free ferroelectric ceramics of (K0.5Na0.5)(Nb1−xSbx)O3 + 0.5 mol% MnO2 and (K0.5Na0.5)(Nb1−xTax)O3 + 0.5 mol%MnO2 for x = 0.05 is reported. The samples after storage at a constant temperature have been subject to infra-low-frequency electric field and radiation. Differences of the photoelectric response between the two examined compounds were found and the restoration of polarisation in the aged ceramic materials by cycles of applied field is discussed.

010302 applied physicsPhotocurrentMaterials sciencebusiness.industryFerroelectric ceramicsAnalytical chemistry02 engineering and technologyDielectricPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityOpticsvisual_artElectric field0103 physical sciencesvisual_art.visual_art_mediumGeneral Materials ScienceIrradiationCeramic0210 nano-technologybusinessInstrumentationPhase Transitions
researchProduct

Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

2021

Review of scientific instruments 92(5), 053703 (2021). doi:10.1063/5.0046567

010302 applied physicsPhotonMaterials scienceElectronPhotoelectric effect01 natural sciencesFluenceSpace charge010305 fluids & plasmas620Electric fieldExtreme ultraviolet0103 physical sciencesddc:620Atomic physicsInstrumentationStorage ring
researchProduct