Search results for "EFFECTOR"

showing 10 items of 217 documents

Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis

2019

Summary While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressi…

0301 basic medicineMitochondrial translationmedicine.medical_treatmentT-LymphocytesCellMitochondrionmedicine.disease_causeRibosomemitochondrial translationOxidative PhosphorylationantibioticsAutoimmunityACTIVATIONMice0302 clinical medicineribosome-targetingMedicine and Health SciencesImmunology and AllergyTRANSCRIPTION FACTORMolecular Targeted TherapyMice Knockout0303 health sciencesEffectorExperimental autoimmune encephalomyelitisautoimmunityCell DifferentiationPeptide Elongation Factor GAnti-Bacterial Agents3. Good healthCell biologymitochondriaInfectious DiseasesCytokinemedicine.anatomical_structureRESPIRATION030220 oncology & carcinogenesisEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisT cellImmunologyINHIBITIONT cellsBiologyOXAZOLIDINONEPeptides CyclicArticleMitochondrial Proteins03 medical and health sciencesNAD+medicineAnimalsHumanselongation factor G1030304 developmental biologyAutoimmune diseaseBacteriaLinezolidBiology and Life SciencesPATHWAYSDNANADmedicine.diseaseIn vitroMice Inbred C57BL030104 developmental biologyTh17 CellsArgyrinCHLORAMPHENICOLMEMBRANERibosomesImmunity
researchProduct

Revisiting the pH-gated conformational switch on the activities of HisKA-family histidine kinases

2020

13 páginas, 6 figuras, 3 tablas

0301 basic medicineModels MolecularBioquímicaHistidine KinaseProtein ConformationScience030106 microbiologyPhosphataseGeneral Physics and AstronomyMicrobiologiaCrystallography X-RayModels BiologicalBiochemistryMicrobiologyGeneral Biochemistry Genetics and Molecular BiologyCatalysisArticleEnzyme catalysis03 medical and health sciencesResidue (chemistry)Protein structureBacterial ProteinsMultienzyme ComplexesHistidineThermotoga maritimaPhosphorylationlcsh:ScienceAuthor CorrectionHistidineX-ray crystallographyMultidisciplinaryEffectorChemistryEscherichia coli ProteinsQGeneral ChemistryHydrogen-Ion ConcentrationResponse regulator030104 developmental biologyBiochemistryMutationTrans-ActivatorsPhosphorylationlcsh:QBacterial Outer Membrane Proteins
researchProduct

Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator

2017

17 páginas, 7 figuras, 1 tabla

0301 basic medicineModels MolecularSalmonella typhimuriumProtein Data Bank (RCSB PDB)Plasma protein bindingBiologyCrystallography X-RayDNA-binding protein03 medical and health sciencesBacterial ProteinsProtein DomainsStructural BiologyGeneticsAmino Acid SequencePhosphorylationTranscription factorSequence Homology Amino AcidEffectorPromoterDNACell biologyResponse regulator030104 developmental biologyRegulonBiochemistryNucleic Acid ConformationProtein BindingNucleic Acids Research
researchProduct

Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible…

2020

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the cause of COVID-19 disease, has the potential to elicit autoimmunity because mimicry of human molecular chaperones by viral proteins. We compared viral proteins with human molecular chaperones, many of which are heat shock proteins, to determine if they share amino acid-sequence segments with immunogenic-antigenic potential, which can elicit cross-reactive antibodies and effector immune cells with the capacity to damage-destroy human cells by a mechanism of autoimmunity. We identified the chaperones that can putatively participate in molecular mimicry phenomena after SARS-CoV-2 infection, focusing on those for which endotheli…

0301 basic medicineMolecular chaperonesShort CommunicationPneumonia ViralAutoimmunityBiologymedicine.disease_causeAutoantigensBiochemistryEpitopeAutoimmunity03 medical and health sciencesBetacoronavirusViral Proteins0302 clinical medicineImmune systemEndothelialitisAntigenHeat shock proteinmedicineHumansSevere acute respiratory syndrome coronavirus 2Amino Acid SequenceDatabases ProteinPandemicsHeat-Shock ProteinsEffectorImmunodominant EpitopesSARS-CoV-2Settore BIO/16 - Anatomia UmanaEndothelial CellsCOVID-19Cell BiologyCell biologyEndothelial stem cellMolecular mimicry030104 developmental biologyCoronavirus Infections030217 neurology & neurosurgeryMolecular mimicryCell Stress and Chaperones
researchProduct

2016

Regulatory T cells (Treg) are essential for T cell homeostasis and maintenance of peripheral tolerance. They prevent activation of auto-reactive T effector cells (Teff) in the context of autoimmunity and allergy. Otherwise, Treg also inhibit effective immune responses against tumors. Besides a number of Treg-associated molecules such as Foxp3, CTLA-4 or GARP, known to play critical roles in Treg differentiation, activation and function, the involvement of additional regulatory elements is suggested. Herein, kinase activities seem to play an important role in Treg fine tuning. Nevertheless, our knowledge regarding the complex intracellular signaling pathways controlling phenotype and functio…

0301 basic medicineMultidisciplinaryEffectorKinaseT cellPeripheral toleranceFOXP3hemic and immune systemschemical and pharmacologic phenomenaBiologyCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineImmune systemmedicine.anatomical_structure030220 oncology & carcinogenesismedicineKinomeSignal transductionPLOS ONE
researchProduct

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct

Nrf2 expression driven by Foxp3 specific deletion of Keap1 results in loss of immune tolerance in mice

2020

European journal of immunology 50(4), 515-524 (2020). doi:10.1002/eji.201948285

0301 basic medicineNF-E2-Related Factor 2T cellImmunologyAutoimmunitychemical and pharmacologic phenomenaBiologyLymphocyte ActivationT-Lymphocytes Regulatorydigestive systemenvironment and public healthImmune toleranceImmunomodulationMice03 medical and health sciences0302 clinical medicineImmune systemImmune TolerancemedicineAnimalsHomeostasisImmunology and AllergyTranscription factorPI3K/AKT/mTOR pathwayInflammationMice KnockoutKelch-Like ECH-Associated Protein 1ChimeraEffectorTOR Serine-Threonine KinasesPeripheral toleranceFOXP3Forkhead Transcription Factorshemic and immune systemsrespiratory systemCell biologyMice Inbred C57BLOxidative Stress030104 developmental biologymedicine.anatomical_structure030215 immunology
researchProduct

Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication.

2020

Synaptic transmission and plasticity are shaped by the dynamic reorganization of signaling molecules within pre- and postsynaptic compartments. The nanoscale organization of key effector molecules has been revealed by single-particle trajectory (SPT) methods. Interestingly, this nanoscale organization is highly heterogeneous. For example, presynaptic voltage-gated calcium channels (VGCCs) and postsynaptic ligand-gated ion channels such as AMPA receptors (AMPARs) are organized into so-called nanodomains where individual molecules are only transiently trapped. These pre- and postsynaptic nanodomains are characterized by a high density of molecules but differ in their molecular organization an…

0301 basic medicineNeuronsCell signalingNeuronal PlasticityVoltage-dependent calcium channelEffectorChemistryGeneral NeuroscienceAMPA receptorNeurotransmissionSynaptic Transmission03 medical and health sciencesMolecular dynamics030104 developmental biology0302 clinical medicinePostsynaptic potentialSynapsesBiophysicsHumansReceptors AMPA030217 neurology & neurosurgeryIon channelTrends in neurosciences
researchProduct

Acute deep vein thrombosis suppresses peripheral T cell effector function

2018

0301 basic medicinePathologymedicine.medical_specialtyEffectorbusiness.industryDeep veinT cellHematologymedicine.diseaseThrombosisPeripheral03 medical and health sciencesVenous thrombosis030104 developmental biology0302 clinical medicinemedicine.anatomical_structureImmunophenotyping030220 oncology & carcinogenesismedicinebusinessFunction (biology)British Journal of Haematology
researchProduct

E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death

2018

International audience; E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.

0301 basic medicineProgrammed cell deathTranscription Geneticbcl-X ProteinRegulatorBcl-xL[SDV.CAN]Life Sciences [q-bio]/CancerBCL-xL mobilityMitochondrionBiochemistrylaw.invention[ SDV.CAN ] Life Sciences [q-bio]/CancerE2F1 Subject Category Autophagy & Cell Death03 medical and health sciences[SDV.CAN] Life Sciences [q-bio]/CancerlawBCL-2 familyCell Line TumorGeneticsJournal ArticleHumansE2F1Molecular BiologyCell DeathbiologyManchester Cancer Research CentreEffectorChemistryResearchInstitutes_Networks_Beacons/mcrcScientific ReportsapoptosisSubcellular localizationMitochondriaCell biologyProtein Transportbcl-2 Homologous Antagonist-Killer Protein030104 developmental biologyGene Expression RegulationProto-Oncogene Proteins c-bcl-2biology.proteinSuppressorbiological phenomena cell phenomena and immunityExtracellular SpaceE2F1 Transcription FactorProtein Binding
researchProduct