Search results for "ELASTIC SCATTERING"
showing 10 items of 735 documents
"Table 19" of "Measurement of the proton and deuteron structure functions, F2(p) and F2(d), and of the ratio sigma(L)/sigma(T)."
1997
Corrected F2D measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.
"Table 27" of "Measurement of the proton and deuteron structure functions, F2(p) and F2(d), and of the ratio sigma(L)/sigma(T)."
1997
Corrected F2D measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.
"Table 2" of "Precision measurement of structure function ratios for Li-6, C-12 and Ca-40"
1992
Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.
"Table 3" of "Precision measurement of the structure function ratios F2 (He) / F2 (D), F2 (C) / F2 (D) and F2 (Ca) / F2 (D)"
1991
No description provided.
Supercurrent Induced Charge-Spin Conversion in Spin-Split Superconductors
2017
We study spin-polarized quasiparticle transport in a mesoscopic superconductor with a spin- splitting field in the presence of co-flowing supercurrent. In such a system, the nonequilibrium state is characterized by charge, spin, energy and spin energy modes. Here we show that in the presence of both spin splitting and supercurrent, all these modes are mutually coupled. As a result, the supercurrent can convert charge imbalance, that in the presence of spin splitting decays on a relatively short scale, to a long-range spin accumulation decaying only via inelastic scattering. This effect enables coherent charge-spin conversion controllable by a magnetic flux, and it can be detected by studyin…
A glimpse of gluons through deeply virtual compton scattering on the proton
2017
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…
Contribution of exclusive diffractive processes to the measured azimuthal asymmetries in SIDIS
2019
Hadron leptoproduction in Semi-Inclusive measurements of Deep-Inelastic Scattering (SIDIS) on unpolarised nucleons allows one to get information on the intrinsic transverse momentum of quarks in a nucleon and on the Boer-Mulders function through the measurement of azimuthal modulations in the cross section. These modulations were recently measured by the HERMES experiment at DESY on proton and deuteron targets, and by the COMPASS experiment using the CERN SPS muon beam and a $^6$LiD target. In both cases, the amplitudes of the $\cos\phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependences for both positive and negative hadrons. It has been known since some time that the measu…
K− over K+ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy
2018
The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, we observe the kaon multiplicity ratio to fall …
Neutrino Structure Functions from GeV to EeV Energies
2023
The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers ($Q^2 \le {\rm few}$ GeV$^2$), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies $E_\nu$ up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to …
Gamma rays from cosmic-ray proton scattering in AGN jets: the intra-cluster gas vastly outshines dark matter
2013
Active Galactic Nuclei (AGN) host powerful jets containing high-energy electrons and protons. The astrophysical environment where AGNs and their jets are found is characterized by large concentrations of both dark matter (DM) and intra-cluster medium (ICM) gas. As the high-energy jet particles transverse the DM and the ICM, elastic and inelastic scattering processes generically lead to the production of final-state photons. As first envisioned by Bloom and Wells (1998), and as more recently pointed out by us and others, the scattering of electrons off of DM could lead to a potentially detectable gamma-ray signal, with the parton-level contribution from protons offering dimmer perspectives. …