Search results for "ELECTROMYOGRAPHY"
showing 10 items of 672 documents
Effects of joint angle and age on ankle dorsi- and plantar-flexor strength.
2007
This study aimed at examining the effects of joint angle and age on the maximal voluntary contraction (MVC) torque, for the agonist and antagonist muscle groups around the ankle, i.e., the dorsi- and plantar-flexors. To this aim, neural and muscular factors were investigated in two groups of healthy men: 11 young (mean age, 24 years) and 18 older (mean age, 78 years). Plantar-flexion (PF) and dorsiflexion (DF) isometric MVC torques were measured in three different ankle joint angles and surface electromyographic activities of the triceps surae and of the tibialis anterior muscles were recorded. The main findings were that the DF-to-PF MVC torque ratio varied with joint angle and age, indica…
Effects of ageing on motor unit activation patterns and reflex sensitivity in dynamic movements.
2009
Both contraction type and ageing may cause changes in H-reflex excitability. H reflex is partly affected by presynaptic inhibition that may also be an important factor in the control of MU activation. The purpose of the study was to examine age related changes in H-reflex excitability and motor unit activation patterns in dynamic and in isometric contractions. Ten younger (YOUNG) and 13 elderly (OLD) males performed isometric (ISO), concentric (CON) and eccentric (ECC) plantarflexions with submaximal activation levels (20% and 40% of maximal soleus surface EMG). Intramuscular EMG data was analyzed utilizing an intramuscular spike amplitude frequency histogram method. Average H/M ratio was a…
The influence of ageing on the force-velocity-power characteristics of human elbow flexor muscles.
2003
Abstract The purpose of this study was to quantify the effects of ageing on the maximal power ( P max ) of the elbow flexor muscles and to determine the impact of velocity on the loss of power in older people. Sixteen elderly subjects (7 men and 9 women, age range 61–78 years) and 17 young subjects (11 men and 6 women, age range 18–27 years) participated in this study. Maximal elbow flexions were performed against increasing inertia. The maximal force ( F max ), maximal shortening velocity ( V max ), P max , dynamic constants ( a , b and a / F max ), optimal force ( F opt ), optimal velocity ( V opt ) and V opt / V max were determined from Hill's equation. Myoelectrical activity (EMG) of th…
Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements.
2009
Abstract Motor imagery is a cognitive process during which subjects mentally simulate movements without actually performing them. Here, we investigated the temporal and electromyographic (EMG) features of imagined arm movements in healthy elderly adults. Twelve young (mean age: 24.0 ± 1.3 years) and 12 elderly (mean age: 67.0 ± 4.5 years) participants executed and mentally simulated, with their right and left arms and as fast and as accurately as possible, arm pointing movements between three targets located in the frontal plane. We used the mental chronometry paradigm as an indicator of the accuracy of the motor imagery process (i.e. isochrony between executed and imagined movements) and t…
Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and olde…
1998
Effects of a 10-week progressive strength training program composed of a mixture of exercises for increasing muscle mass, maximal peak force, and explosive strength (rapid force production) were examined in 8 young (YM) (29+/-5 yrs) and 10 old (OM) (61+/-4 yrs) men. Electromyographic activity, maximal bilateral isometric peak force, and maximal rate of force development (RFD) of the knee extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF), muscle fiber proportion, and fiber areas of types I, IIa, IIb, and IIab of the vastus lateralis were evaluated. Maximal and explosive strength values remained unaltered in both groups during a 3-week control period with no training…
Muscle activation during cycling at different cadences: Effect of maximal strength capacity
2007
International audience; The purpose of this study was to examine the influence of maximal strength capacity on muscle activation, during cycling, at three selected cadences: a low cadence (50 rpm), a high cadence (110 rpm) and the freely chosen cadence (FCC). Two groups of trained cyclists were selected on the basis of the different maximal isokinetic voluntary contraction values (MVCi) of their lower extremity muscles as follow: Fmin (lower MVCi group) and Fmax (higher MVCi group). All subjects performed three 4-min cycling exercises at a power output corresponding to 80 % of the ventilatory threshold under the three cadences. Neuromuscular activity of vastus lateralis (VL), rectus femoris…
Ventilatory threshold during incremental running can be estimated using EMG shorts
2012
The present study examined whether shorts with textile electromyographic (EMG) electrodes can be used to detect second ventilatory threshold (V(T2)) during incremental treadmill running. Thirteen recreationally active (REC) and eight endurance athletes were measured for EMG, heart rate, blood lactate and respiratory gases during VO(2max) test (3 min ramps, 1 km·h(-1) increments). V(T)(2), onset of blood lactate accumulation (OBLA) and EMG threshold (EMG(T)) were determined. In athletes, OBLA occurred at 56 ± 6 mL·kg(-1)·min(-1), V(T2) occurred at 59 ± 6 mL·kg(-1)·min(-1), and EMG(T) at 62 ± 6 mL·kg(-1)·min(-1) without significant differences between methods (analysis of variance: ANOVA). In…
Neuromuscular characteristics and fatigue in endurance and sprint athletes during a new anaerobic power test
1994
The purpose of this study was to investigate neuromuscular and energy performance characteristics of anaerobic power and capacity and the development of fatigue. Ten endurance and ten sprint athletes performed a new maximal anaerobic running power test (MARP), which consisted ofn x 20-s runs on a treadmill with 100-s recovery between the runs. Blood lactate concentration [la−]b was measured after each run to determine submaximal and maximal indices of anaerobic power (P 3mmol·1 −1,P5mmol·1 −1,P10mmol·1 −1andP max) which was expressed as the oxygen demand of the runs according to the American College of Sports Medicine equation: the oxygen uptake (ml·kg−1·min−1)=0.2·velocity (m·min−1) +0.9·s…
Central motor conduction time by magnetic stimulation of the cortex and peripheral nerve conduction follow-up studies in Friedreich's ataxia.
1998
A follow-up clinical study, peripheral motor and sensory nerve conduction velocities and central motor conduction by magnetic stimulation of the cortex were performed in 13 patients with classical Friedreich's ataxia (FA) phenotype, for a period of 9-12 years. Clinical worsening was unrelated to peripheral nerve abnormalities. The amplitude of the nerve action potentials and delayed conduction velocity remained unchanged for several years. Central motor conduction times were abnormal in all patients. Clinical conditions worsened significantly between successive examinations with significant increments in threshold and significant decrement of the amplitude of motor evoked potentials. The re…
Sarcolemmal excitability as investigated with M-waves after eccentric exercise in humans
2006
It has been shown that intensive eccentric muscle actions lead to prolonged loss of muscle force and sarcolemmal damage. This may lead to a reduction in the excitability of the sarcolemma and contribute to the functional deficit. Experiments were carried out to test sarcolemmal excitability after eccentric elbow flexor exercise in humans. Electrically elicited surface compound muscle action potential (M-wave) properties from 30s stimulation trains (20Hz) were analyzed in biceps brachii muscle immediately after, 1h and 48h after the exercise. M-wave area, amplitude, root mean square and duration were reduced immediately after the eccentric exercise. However, no such reduction could be observ…