Search results for "ELECTRONS"

showing 10 items of 1325 documents

Disorder and interactions in systems out of equilibrium : the exact independent-particle picture from density functional theory

2017

Density functional theory (DFT) exploits an independent-particle-system construction to replicate the densities and current of an interacting system. This construction is used here to access the exact effective potential and bias of non-equilibrium systems with disorder and interactions. Our results show that interactions smoothen the effective disorder landscape, but do not necessarily increase the current, due to the competition of disorder screening and effective bias. This puts forward DFT as a diagnostic tool to understand disorder screening in a wide class of interacting disordered systems.

Class (set theory)Current (mathematics)Non-equilibrium thermodynamicsFOS: Physical sciences02 engineering and technologyCondensed Matter::Disordered Systems and Neural Networks01 natural sciencesCondensed Matter - Strongly Correlated ElectronsInformationSystems_GENERALdisordered systems0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)strongly correlated systemsDisorder screeningStatistical physics010306 general physicsdensity functional theoryPhysicsta114Condensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)tiheysfunktionaaliteoriaDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnologynonequilibrium Green's functionParticleDensity functional theory0210 nano-technology
researchProduct

Magnetization and magnetoresistive response of LiMn2O4 near the charge ordering transition

2000

We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.

Colossal magnetoresistanceCondensed matter physicsMagnetoresistanceChemistrymedia_common.quotation_subjectFrustrationGeneral ChemistryMagnetic susceptibilityCondensed Matter::Materials ScienceHysteresisMagnetizationCharge orderingMaterials ChemistryCondensed Matter::Strongly Correlated Electronsmedia_commonPerovskite (structure)Journal of Materials Chemistry
researchProduct

Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction

2016

We use the Shadow Wave Function formalism as a convenient model to study the fermion sign problem affecting all projector Quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this prediction through some numerical results. Finally, we discuss the fermion sign problem computational complexity and methods for alleviating its severity.

Computational complexity theoryQuantum Monte CarloFOS: Physical sciences02 engineering and technology01 natural scienceslaw.inventionCondensed Matter - Strongly Correlated ElectronslawPhysics - Chemical Physics0103 physical sciencesStatistical physics010306 general physicsWave functionProjection algorithmsChemical Physics (physics.chem-ph)Numerical sign problemPhysicsStrongly Correlated Electrons (cond-mat.str-el)FermionComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyImaginary timeCondensed Matter - Other Condensed MatterClassical mechanicsProjector0210 nano-technologyPhysics - Computational PhysicsOther Condensed Matter (cond-mat.other)Physical Review E
researchProduct

"Table 3" of "Search for supersymmetry using final states with one lepton, jets, and missing transverse momentum with the ATLAS detector in sqrt{s} =…

2011

Distribution of M(C=EFFECTIVE) IN GEV for data and background MC calculation.

Computer Science::Software EngineeringSUSY7000.0Jet ProductionNInclusiveProton-Proton ScatteringComputer Science::Programming LanguagesCondensed Matter::Strongly Correlated ElectronsHigh Energy Physics::ExperimentP P --> LEPTON+ JETS XP P --> LEPTON- JETS XSupersymmetryNuclear Experiment
researchProduct

Revisitation of Nonorthogonal Spin Adaptation in Coupled Cluster Theory.

2015

The benefits of what is alternatively called a nonorthogonally spin-adapted, spin-free, or orbital representation of the coupled cluster equations is discussed relative to orthogonally spin-adapted, spin-orbital, and spin-integrated theories. In particular, specific linear combinations of the orbital cluster amplitudes, denoted spin-summed amplitudes, are shown to reduce the number of contractions that must be explicitly performed and to simplify the expressions and their derivation. The computational efficiency of the spin-summed approach is discussed and compared to orthogonally spin-adapted and spin-integrated approaches. The spin-summed approach is shown to have significant computationa…

Computer scienceAdaptation (eye)computer.software_genreComputer Science ApplicationsAmplitudeCoupled clusterCluster (physics)Condensed Matter::Strongly Correlated ElectronsData miningStatistical physicsPhysical and Theoretical ChemistryRepresentation (mathematics)Linear combinationcomputerSpin-½Journal of chemical theory and computation
researchProduct

Exceptional sign changes of the nonlocal spin Seebeck effect in antiferromagnetic hematite

2021

A.R. and M.K. acknowledge support from the Graduate School of Excellence Materials Science in Mainz (DFG/GSC 266). A.R. and M.K. also acknowledge support from both MaHoJeRo (DAAD Spintronics network, Projects No. 57334897 and No. 57524834) and SPIN+X (DFG SFB TRR 173, No. 268565370 Projects No. A01 and No. B02) and KAUST (Project No. OSR-2019-CRG8-4048.2). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitat Mainz (MPGC). A.R., R.L., M.E., U.N., and M.K. acknowledge support from the DFG Project No. 423441604. R.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement FAST…

Condensed Matter - Materials Science530 Physicsmedia_common.quotation_subjectLibrary scienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology530 Physik021001 nanoscience & nanotechnology01 natural sciencesSign (linguistics)Condensed Matter::Materials ScienceResearch councilExcellencePolitical science0103 physical sciencesmedia_common.cataloged_instanceChristian ministryddc:530Condensed Matter::Strongly Correlated ElectronsEuropean union010306 general physics0210 nano-technologymedia_commonPhysical Review B
researchProduct

Magnetic sensitivity distribution of Hall devices in antiferromagnetic switching experiments

2021

We analyze the complex impact of the local magnetic spin texture on the transverse Hall-type voltage in device structures utilized to measure magnetoresistance effects. We find a highly localized and asymmetric magnetic sensitivity in the eight-terminal geometries that are frequently used in current-induced switching experiments, for instance to probe antiferromagnetic materials. Using current-induced switching of antiferromagnetic NiO/Pt as an example, we estimate the change in the spin Hall magnetoresistance signal associated with switching events based on the domain switching patterns observed via direct imaging. This estimate correlates with the actual electrical data after subtraction …

Condensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology530 Physik01 natural sciences0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology
researchProduct

Observation of long-range orbital transport and giant orbital torque

2022

AbstractModern spintronics relies on the generation of spin currents through spin-orbit coupling. The spin-current generation has been believed to be triggered by current-induced orbital dynamics, which governs the angular momentum transfer from the lattice to the electrons in solids. The fundamental role of the orbital response in the angular momentum dynamics suggests the importance of the orbital counterpart of spin currents: orbital currents. However, evidence for its existence has been elusive. Here, we demonstrate the generation of giant orbital currents and uncover fundamental features of the orbital response. We experimentally and theoretically show that orbital currents propagate o…

Condensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsAstrophysics::Earth and Planetary AstrophysicsCommunications Physics
researchProduct

Quantum rescaling, domain metastability and hybrid domain-walls in two-dimensional CrI3 magnets

2020

Higher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here we identify the recently discovered two-dimensional (2D) van der Waals (vdW) CrI3 as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. We find that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI3 but requiring quantum rescaling corrections to reproduce its thermal properties. The quantum nature of the heat bath represented by discrete electron-spin and phonon-spin scattering processes induced the formation of spin fluctuations…

Condensed Matter - Materials ScienceCondensed Matter - Strongly Correlated ElectronsCondensed Matter - Mesoscale and Nanoscale PhysicsStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)cond-mat.mes-hallMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencescond-mat.str-elcond-mat.stat-mechCondensed Matter - Statistical Mechanicscond-mat.mtrl-sci
researchProduct

Geometric, electronic, and magnetic structure of Co$_2$FeSi: Curie temperature and magnetic moment measurements and calculations

2005

In this work a simple concept was used for a systematic search for new materials with high spin polarization. It is based on two semi-empirical models. Firstly, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for Co$_2$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, Co$_2$FeSi was revisited. The compound was investigated in detail concerning its geometrical and magnetic structure by m…

Condensed Matter - Materials ScienceCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct