Search results for "ELECTRONS"
showing 10 items of 1325 documents
Disorder and interactions in systems out of equilibrium : the exact independent-particle picture from density functional theory
2017
Density functional theory (DFT) exploits an independent-particle-system construction to replicate the densities and current of an interacting system. This construction is used here to access the exact effective potential and bias of non-equilibrium systems with disorder and interactions. Our results show that interactions smoothen the effective disorder landscape, but do not necessarily increase the current, due to the competition of disorder screening and effective bias. This puts forward DFT as a diagnostic tool to understand disorder screening in a wide class of interacting disordered systems.
Magnetization and magnetoresistive response of LiMn2O4 near the charge ordering transition
2000
We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.
Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction
2016
We use the Shadow Wave Function formalism as a convenient model to study the fermion sign problem affecting all projector Quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this prediction through some numerical results. Finally, we discuss the fermion sign problem computational complexity and methods for alleviating its severity.
"Table 3" of "Search for supersymmetry using final states with one lepton, jets, and missing transverse momentum with the ATLAS detector in sqrt{s} =…
2011
Distribution of M(C=EFFECTIVE) IN GEV for data and background MC calculation.
Revisitation of Nonorthogonal Spin Adaptation in Coupled Cluster Theory.
2015
The benefits of what is alternatively called a nonorthogonally spin-adapted, spin-free, or orbital representation of the coupled cluster equations is discussed relative to orthogonally spin-adapted, spin-orbital, and spin-integrated theories. In particular, specific linear combinations of the orbital cluster amplitudes, denoted spin-summed amplitudes, are shown to reduce the number of contractions that must be explicitly performed and to simplify the expressions and their derivation. The computational efficiency of the spin-summed approach is discussed and compared to orthogonally spin-adapted and spin-integrated approaches. The spin-summed approach is shown to have significant computationa…
Exceptional sign changes of the nonlocal spin Seebeck effect in antiferromagnetic hematite
2021
A.R. and M.K. acknowledge support from the Graduate School of Excellence Materials Science in Mainz (DFG/GSC 266). A.R. and M.K. also acknowledge support from both MaHoJeRo (DAAD Spintronics network, Projects No. 57334897 and No. 57524834) and SPIN+X (DFG SFB TRR 173, No. 268565370 Projects No. A01 and No. B02) and KAUST (Project No. OSR-2019-CRG8-4048.2). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitat Mainz (MPGC). A.R., R.L., M.E., U.N., and M.K. acknowledge support from the DFG Project No. 423441604. R.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement FAST…
Magnetic sensitivity distribution of Hall devices in antiferromagnetic switching experiments
2021
We analyze the complex impact of the local magnetic spin texture on the transverse Hall-type voltage in device structures utilized to measure magnetoresistance effects. We find a highly localized and asymmetric magnetic sensitivity in the eight-terminal geometries that are frequently used in current-induced switching experiments, for instance to probe antiferromagnetic materials. Using current-induced switching of antiferromagnetic NiO/Pt as an example, we estimate the change in the spin Hall magnetoresistance signal associated with switching events based on the domain switching patterns observed via direct imaging. This estimate correlates with the actual electrical data after subtraction …
Observation of long-range orbital transport and giant orbital torque
2022
AbstractModern spintronics relies on the generation of spin currents through spin-orbit coupling. The spin-current generation has been believed to be triggered by current-induced orbital dynamics, which governs the angular momentum transfer from the lattice to the electrons in solids. The fundamental role of the orbital response in the angular momentum dynamics suggests the importance of the orbital counterpart of spin currents: orbital currents. However, evidence for its existence has been elusive. Here, we demonstrate the generation of giant orbital currents and uncover fundamental features of the orbital response. We experimentally and theoretically show that orbital currents propagate o…
Quantum rescaling, domain metastability and hybrid domain-walls in two-dimensional CrI3 magnets
2020
Higher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here we identify the recently discovered two-dimensional (2D) van der Waals (vdW) CrI3 as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. We find that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI3 but requiring quantum rescaling corrections to reproduce its thermal properties. The quantum nature of the heat bath represented by discrete electron-spin and phonon-spin scattering processes induced the formation of spin fluctuations…
Geometric, electronic, and magnetic structure of Co$_2$FeSi: Curie temperature and magnetic moment measurements and calculations
2005
In this work a simple concept was used for a systematic search for new materials with high spin polarization. It is based on two semi-empirical models. Firstly, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for Co$_2$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, Co$_2$FeSi was revisited. The compound was investigated in detail concerning its geometrical and magnetic structure by m…