Search results for "EPIGENETICS"
showing 10 items of 517 documents
Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy
2016
BACKGROUND: We conducted an epigenome-wide association study (EWAS) of DNA methylation in placenta in relation to maternal tobacco smoking during pregnancy and examined whether smoking-induced changes lead to low birthweight. METHODS: DNA methylation in placenta was measured using the Illumina HumanMethylation450 BeadChip in 179 participants from the INfancia y Medio Ambiente (INMA) birth cohort. Methylation levels across 431 311 CpGs were tested for differential methylation between smokers and non-smokers in pregnancy. We took forward three top-ranking loci for further validation and replication by bisulfite pyrosequencing using data of 248 additional participants of the INMA cohort. We ex…
The close link between the fetal programming imprinting and neurodegeneration in adulthood: The key role of “hemogenic endothelium” programming
2021
The research on neurodegenerative diseases (NeuroDegD) has been traditionally focused on later life stages. There is now an increasing evidence, that they may be programmed during early development. Here, we propose that NeuroDegD are the result of the complex process of imprinting on fetal hemogenic endothelium, from which the microglial cells make to origin. The central role of placenta and epigenetic mechanisms (methylation of DNA, histone modifications and regulation by non-coding RNAs) in mediating the short and long-term effects has been also described. Precisely, it reports their role in impacting plasticity and memory of microglial cells. In addition, we also underline the necessity…
The Phenotypic Characterization of the Cammalleri Sisters, an Example of Exceptional Longevity
2020
This article shows demographic, clinical, anamnestic, cognitive, and functional data as well as biochemical, genetic, and epigenetic parameters of two exceptional siblings: Diega (supercentenarian) and Filippa (semisupercentenarian) Cammalleri. The purpose of this study is to provide new insights into the extreme phenotypes represented by semisupercentenarians and supercentenarians. Different studies have been published on supercentenarians, but to the best of our knowledge, this is the only concerning two sisters and the most detailed from a phenotypic point of view. Our findings agree with the suggestion that supercentenarians have an increasing relative resistance to age-related diseases…
DNA demethylation caused By 5-Aza-2'-Deoxycytidine induces mitotic alterations and aneuploidy
2016
Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduc…
MicroRNA targeting by quercetin in cancer treatment and chemoprotection
2019
A growing number of evidences from clinical and preclinical studies have shown that dysregulation of microRNA (miRNA) function contributes to the progression of cancer and thus miRNA can be an effective target in therapy. Dietary phytochemicals, such as quercetin, are natural products that have potential anti-cancer properties due to their proven antioxidant, anti-inflammatory, and anti-proliferative effects. Available experimental studies indicate that quercetin could modulate multiple cancer-relevant miRNAs including let-7, miR-21, miR-146a and miR-155, thereby inhibiting cancer initiation and development. This paper reviews the data supporting the use of quercetin for miRNA-mediated chem…
Oxidative stress and antioxidants in the pathophysiology of malignant melanoma.
2018
Abstract The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative st…
DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans.
2015
Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females…
The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis.
2016
KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. M…
Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy
2017
The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the nature of interactions as well as competitions ensuring steady supply of nutrients and anapleoretic molecules for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic reprogramming also plays a significant role in suppressing the immune attack on the tumor cells and in resis…
Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait
2016
Stage 4S neuroblastoma (NB) is a special type of NB found in infants with metastases at diagnosis and is associated with an excellent outcome due to its remarkable capacity to undergo spontaneous regression. As genomics have not been able to explain this intriguing clinical presentation, we here aimed at profiling the DNA methylome of stage 4S NB to better understand this phenomenon. To this purpose, differential methylation analyses between International Neuroblastoma Staging System (INSS) stage 4S, stage 4 and stage 1/2 were performed, using methyl-CpG-binding domain (MBD) sequencing data of 14 stage 4S, 14 stage 4, and 13 stage 1/2 primary NB tumors (all MYCN non-amplified in order not t…