Search results for "ESTIMATION"

showing 10 items of 924 documents

Basic Statistical Techniques

2012

Exploratory data analysisData collectionComputer scienceInterval estimationStatisticsData analysisStatistical inferenceSampling (statistics)Statistical and Managerial Techniques for Six Sigma Methodology
researchProduct

FastSLAM 2.0: Least-Squares Approach

2006

In this paper, we present a set of robust and efficient algorithms with O(N) cost for the following situations: object detection with a laser ranger; mobile robot pose estimation and a FastSLAM improved implementation. Objected detection is mainly based on a novel multiple line fitting method, related with walls at the environment. This method assumes that walls at the environment constitute a regular constrained angles. A line-based pose estimation method is also proposed, based on Least-Squares (LS). This method performs the matching of detected lines and estimated map lines and it can provide the global pose estimation under assumption of known Data-Association. FastSLAM 1.0 has been imp…

Extended Kalman filterLine fittingComputer sciencebusiness.industryLine (geometry)Mobile robotComputer visionArtificial intelligencebusiness3D pose estimationPoseLeast squaresObject detection2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
researchProduct

Denoising Autoencoders for Fast Combinatorial Black Box Optimization

2015

Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Autoencoders (AE) are generative stochastic networks with these desired properties. We integrate a special type of AE, the Denoising Autoencoder (DAE), into an EDA and evaluate the performance of DAE-EDA on several combinatorial optimization problems with a single objective. We asses the number of fitness evaluations as well as the required CPU times. We compare the results to the performance to the Bayesian Optimization Algorithm (BOA) and RBM-EDA, another EDA which is based on a generative neural network which has proven competitive with BOA. For the considered pro…

FOS: Computer and information sciencesArtificial neural networkI.2.6business.industryFitness approximationComputer scienceNoise reductionI.2.8MathematicsofComputing_NUMERICALANALYSISComputer Science - Neural and Evolutionary ComputingMachine learningcomputer.software_genreAutoencoderOrders of magnitude (bit rate)Estimation of distribution algorithmBlack boxComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONNeural and Evolutionary Computing (cs.NE)Artificial intelligencebusinessI.2.6; I.2.8computerProceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation
researchProduct

A probabilistic estimation and prediction technique for dynamic continuous social science models: The evolution of the attitude of the Basque Country…

2015

In this paper, a computational technique to deal with uncertainty in dynamic continuous models in Social Sciences is presented.Considering data from surveys,the method consists of determining the probability distribution of the survey output and this allows to sample data and fit the model to the sampled data using a goodness-of-fit criterion based the χ2-test. Taking the fitted parameters that were not rejected by the χ2-test, substituting them into the model and computing their outputs, 95% confidence intervals in each time instant capturing the uncertainty of the survey data (probabilistic estimation) is built. Using the same set of obtained model parameters, a prediction over …

FOS: Computer and information sciencesAttitude dynamicsProbabilistic predictionComputer sciencePopulationDivergence-from-randomness modelSample (statistics)computer.software_genreMachine Learning (cs.LG)Probabilistic estimationSocial scienceeducationProbabilistic relevance modeleducation.field_of_studyApplied MathematicsProbabilistic logicConfidence intervalComputer Science - LearningComputational MathematicsSocial dynamic modelsProbability distributionSurvey data collectionData miningMATEMATICA APLICADAcomputerApplied Mathematics and Computation
researchProduct

Optimized Kernel Entropy Components

2016

This work addresses two main issues of the standard Kernel Entropy Component Analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of by variance as in Kernel Principal Components Analysis. In this work, we propose an extension of the KECA method, named Optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular…

FOS: Computer and information sciencesComputer Networks and CommunicationsKernel density estimationMachine Learning (stat.ML)02 engineering and technologyKernel principal component analysisMachine Learning (cs.LG)Artificial IntelligencePolynomial kernelStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringMathematicsbusiness.industry020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsComputer Science - LearningKernel methodKernel embedding of distributionsVariable kernel density estimationRadial basis function kernelKernel smoother020201 artificial intelligence & image processingArtificial intelligencebusinessSoftwareIEEE Transactions on Neural Networks and Learning Systems
researchProduct

Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference

2018

This letter introduces warped Gaussian process (WGP) regression in remote sensing applications. WGP models output observations as a parametric nonlinear transformation of a GP. The parameters of such a prior model are then learned via standard maximum likelihood. We show the good performance of the proposed model for the estimation of oceanic chlorophyll content from multispectral data, vegetation parameters (chlorophyll, leaf area index, and fractional vegetation cover) from hyperspectral data, and in the detection of the causal direction in a collection of 28 bivariate geoscience and remote sensing causal problems. The model consistently performs better than the standard GP and the more a…

FOS: Computer and information sciencesComputer Science - Machine LearningHeteroscedasticityRemote sensing applicationComputer scienceComputer Vision and Pattern Recognition (cs.CV)Maximum likelihoodComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologies02 engineering and technologyBivariate analysis010501 environmental sciences01 natural sciencesMachine Learning (cs.LG)Data modelingsymbols.namesakeElectrical and Electronic EngineeringGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingParametric statisticsEstimation theoryHyperspectral imagingGeotechnical Engineering and Engineering GeologyConfidence intervalCausal inferencesymbolsIEEE Geoscience and Remote Sensing Letters
researchProduct

Kernel methods and their derivatives: Concept and perspectives for the earth system sciences.

2020

Kernel methods are powerful machine learning techniques which implement generic non-linear functions to solve complex tasks in a simple way. They Have a solid mathematical background and exhibit excellent performance in practice. However, kernel machines are still considered black-box models as the feature mapping is not directly accessible and difficult to interpret.The aim of this work is to show that it is indeed possible to interpret the functions learned by various kernel methods is intuitive despite their complexity. Specifically, we show that derivatives of these functions have a simple mathematical formulation, are easy to compute, and can be applied to many different problems. We n…

FOS: Computer and information sciencesComputer Science - Machine LearningSupport Vector MachineTheoretical computer scienceComputer scienceEntropyKernel FunctionsNormal Distribution0211 other engineering and technologies02 engineering and technologyMachine Learning (cs.LG)Machine LearningStatistics - Machine LearningSimple (abstract algebra)0202 electrical engineering electronic engineering information engineeringOperator TheoryData ManagementMultidisciplinaryGeographyApplied MathematicsSimulation and ModelingQRDensity estimationKernel methodKernel (statistics)Physical SciencessymbolsMedicine020201 artificial intelligence & image processingAlgorithmsResearch ArticleComputer and Information SciencesScienceMachine Learning (stat.ML)Research and Analysis MethodsKernel MethodsKernel (linear algebra)symbols.namesakeArtificial IntelligenceSupport Vector MachinesHumansEntropy (information theory)Computer SimulationGaussian process021101 geological & geomatics engineeringData VisualizationCorrectionRandom VariablesFunction (mathematics)Probability TheorySupport vector machineAlgebraPhysical GeographyLinear AlgebraEarth SciencesEigenvectorsRandom variableMathematicsEarth SystemsPLoS ONE
researchProduct

Randomized kernels for large scale Earth observation applications

2020

Abstract Current remote sensing applications of bio-geophysical parameter estimation and image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. New satellite sensors involving a high number of improved time, space and wavelength resolutions give rise to challenging computational problems. Standard physical inversion techniques cannot cope efficiently with this new scenario. Dealing with land cover classification of the new image sources has also turned to be a complex problem requiring large amount of memory and processing time. In order to cope with these problems, statistical learning has greatly helped in the last years to develop st…

FOS: Computer and information sciencesEarth observationComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer scienceRemote sensing application0211 other engineering and technologiesSoil Science02 engineering and technologycomputer.software_genre01 natural sciencesMachine Learning (cs.LG)Computers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingContextual image classificationEstimation theoryHyperspectral imagingGeology15. Life on landKernel methodKernel regressionData miningComputational problemcomputerRemote Sensing of Environment
researchProduct

Futures pricing in electricity markets based on stable CARMA spot models

2012

We present a new model for the electricity spot price dynamics, which is able to capture seasonality, low-frequency dynamics and the extreme spikes in the market. Instead of the usual purely deterministic trend we introduce a non-stationary independent increments process for the low-frequency dynamics, and model the large uctuations by a non-Gaussian stable CARMA process. The model allows for analytic futures prices, and we apply these to model and estimate the whole market consistently. Besides standard parameter estimation, an estimation procedure is suggested, where we t the non-stationary trend using futures data with long time until delivery, and a robust L 1 -lter to nd the states of …

FOS: Computer and information sciencesEconomics and EconometricsElectricity spot pricebusiness.industryEstimation theoryRisk premium60G52 62M10 91B84 (Primary) 60G10 60G51 91B70 (Secondary)Lévy processStatistics - ApplicationsCARMA model electricity spot prices electricity forward prices continuous time linear model Lévy process stable CARMA process risk premium robust filterddc:MicroeconomicsFOS: Economics and businessGeneral EnergyBase load power plantPeak loadEconometricsEconomicsApplications (stat.AP)ElectricityPricing of Securities (q-fin.PR)businessFutures contractQuantitative Finance - Pricing of Securities
researchProduct

Fractional generalized cumulative entropy and its dynamic version

2021

Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fract…

FOS: Computer and information sciencesExponential distributionComputer Science - Information TheoryMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMeasure (mathematics)010305 fluids & plasmas0103 physical sciencesFOS: MathematicsApplied mathematicsAlmost surelyCumulative entropy; Fractional calculus; Stochastic orderings; EstimationEntropy (energy dispersal)010306 general physicsStochastic orderingsMathematicsCentral limit theoremNumerical AnalysisInformation Theory (cs.IT)Applied MathematicsCumulative distribution functionProbability (math.PR)Fractional calculusEmpirical measureFractional calculusModeling and SimulationEstimationCumulative entropyMathematics - ProbabilityCommunications in Nonlinear Science and Numerical Simulation
researchProduct