Search results for "Edge based"
showing 10 items of 36 documents
Knowledge management in developing regions: the case of Valle de Aburrá, Colombia
2019
This study aims to identify the components of a knowledge management (KM) model to support innovation governance in a Colombian cosmetics cluster. The inter-organisational management of knowledge applied to innovation governance, and the perspective of endogenous economic development emphasises the structural specificities of developing countries. In line with this objective, the community-based participatory research (CBPR) and Delphi methods were combined to collect information from the cluster's different stakeholders, among them dependent shareholders who expressed their views through spokespersons. In an initial stage, a knowledge management model was built. After a second stage with a…
A New Tool for the Modeling of AI and Machine Learning Applications: Random Walk-Jump Processes
2011
Published version of an article from the book: Hybrid artificial intelligent systems, Lecture notes in computer science. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-642-21219-2_2 There are numerous applications in Artificial Intelligence (AI) and Machine Learning (ML) where the criteria for decisions are based on testing procedures. The most common tools used in such random phenomena involve Random Walks (RWs). The theory of RWs and its applications have gained an increasing research interest since the start of the last century. [1]. In this context, we note that a RW is, usually, defined as a trajectory involving a series of successive ran…
A Stochastic Search on the Line-Based Solution to Discretized Estimation
2012
Published version of a chapter in the book: Advanced Research in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-31087-4_77 Recently, Oommen and Rueda [11] presented a strategy by which the parameters of a binomial/multinomial distribution can be estimated when the underlying distribution is nonstationary. The method has been referred to as the Stochastic Learning Weak Estimator (SLWE), and is based on the principles of continuous stochastic Learning Automata (LA). In this paper, we consider a new family of stochastic discretized weak estimators pertinent to tracking time-varying binomial distributions. As opposed to the SLWE, our p…
Improving the Performance Metric of Wireless Sensor Networks with Clustering Markov Chain Model and Multilevel Fusion
2013
Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2013/783543 Open access The paper proposes a performance metric evaluation for a distributed detection wireless sensor network with respect to IEEE 802.15.4 standard. A distributed detection scheme is considered with presence of the fusion node and organized sensors into the clustering and non-clustering networks. Sensors are distributed in clusters uniformly and nonuniformly and network has multilevel fusion centers. Fusion centers act as heads of clusters for decision making based on majority-like received signal strength (RSS) with comparis…
A Learning Automata Based Solution to Service Selection in Stochastic Environments
2010
Published version of a paper published in the book: Trends in Applied Intelligent Systems. Also available on SpringerLink: http://dx.doi.org/10.1007/978-3-642-13033-5_22 With the abundance of services available in today’s world, identifying those of high quality is becoming increasingly difficult. Reputation systems can offer generic recommendations by aggregating user provided opinions about service quality, however, are prone to ballot stuffing and badmouthing . In general, unfair ratings may degrade the trustworthiness of reputation systems, and changes in service quality over time render previous ratings unreliable. In this paper, we provide a novel solution to the above problems based …
Solving Non-Stationary Bandit Problems by Random Sampling from Sibling Kalman Filters
2010
Published version of an article from Lecture Notes in Computer Science. Also available at SpringerLink: http://dx.doi.org/10.1007/978-3-642-13033-5_21 The multi-armed bandit problem is a classical optimization problem where an agent sequentially pulls one of multiple arms attached to a gambling machine, with each pull resulting in a random reward. The reward distributions are unknown, and thus, one must balance between exploiting existing knowledge about the arms, and obtaining new information. Dynamically changing (non-stationary) bandit problems are particularly challenging because each change of the reward distributions may progressively degrade the performance of any fixed strategy. Alt…
Rule based reasoning for network management
2006
This paper focuses on improving network management by the adoption of artificial intelligence techniques. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as a managing entity capable of directing, coordinating, and triggering monitoring and management actions in the proposed architecture. The logical inference system has been devised to enable automated isolation, diagnosis, and to repair network anomalies, thus enhancing the reliability, performance, and security of the network. The measurements of network events are captured by programmable sensors deployed on the network devices and are collected by the network management entity whe…
Modeling and Verification of Symbolic Distributed Applications Through an Intelligent Monitoring Agent
2022
Wireless Sensor Networks (WSNs) represent a key component in emerging distributed computing paradigms such as IoT, Ambient Intelligence, and Smart Cities. In these contexts, the difficulty of testing, verifying, and monitoring applications in their intended scenarios ranges from challenging to impractical. Current simulators can only be used to investigate correctness at source code level and with limited accuracy. This paper proposes a system and a methodology to model and verify symbolic distributed applications running on WSNs. The approach allows to complement the distributed application code at a high level of abstraction in order to test and reprogram it, directly, on deployed network…
Interplay Between Sustainable Development, Knowledge Society, and Smart Future Manufacturing Technologies in EU RTD Policy Documents, in the Work Pro…
2015
Modern societies create, share and use knowledge to grow wealth and well-being, in other words—to follow the principles of sustainable development on a broader scale. In such societies jobs no longer depend on basic manufacturing but on gaining and smartly applying the knowledge instead: developing and using the manufacturing technologies more efficiently. A knowledge-based society addresses the socio-economic challenges by international and inter-sectorial sharing of knowledge crucial for innovation. Sustainable development is a core EU objective ensuring our future being not compromised by our present socio-economic development. Policy-makers at the EU and Member State level have agreed t…
On achieving near-optimal “Anti-Bayesian” Order Statistics-Based classification fora asymmetric exponential distributions
2013
Published version of a Chapter in the book: Computer Analysis of Images and Patterns. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-40261-6_44 This paper considers the use of Order Statistics (OS) in the theory of Pattern Recognition (PR). The pioneering work on using OS for classification was presented in [1] for the Uniform distribution, where it was shown that optimal PR can be achieved in a counter-intuitive manner, diametrically opposed to the Bayesian paradigm, i.e., by comparing the testing sample to a few samples distant from the mean - which is distinct from the optimal Bayesian paradigm. In [2], we showed that the results could be extended for a few sym…