Search results for "Efficiency"
showing 10 items of 1430 documents
Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties
2019
Abstract Carbonyl-functionalized indenofluorene was electropolymerized with a high faradaic efficiency of 85% and the solid state properties of the resulting polymeric thin films were investigated. They displayed modular optical properties depending on their oxidation state. The approach used for inorganic semiconductors was applied to polyindeonofluorene derivative. Mott-Schottky analysis evidenced a switching from p-type to n-type electrical conduction, suggesting an ambipolar behaviour of the polymer. As an application, flexible organic memristors were fabricated and resistive switching properties were observed.
Energy Policies and Sustainable Management of Energy Sources
2017
Sustainability of current energy policies and known mid-term policies are analised in their multiple facets. First an overview is given about the trend of global energy demand and energy production, analysing the share of energy sources and the geographic distribution of demand, on the basis of statistics and projections published by major agencies. The issue of sustainability of the energy cycle is finally addressed, with specific reference to systems with high share of renewable energy and storage capability, highlighting some promising energy sources and storage approaches.
Evaluating the material resource efficiency of secondary aluminium production: A Monte Carlo-based decision-support tool
2019
The contamination of aluminium streams during the different life cycle stages by alloy mixing and/or accumulation of foreign elements, in combination with the limited melt purification options during remelting, represents an important limiting factor in recycling. Consequently, in secondary aluminium production, primary aluminium is used to dilute the concentration of the residual elements, and alloying elements are added to adjust the composition to the target alloy specifications. However, adding elements, for which their refinement in a subsequent recycling step is problematic, results in permanent down-cycling or ‘quality losses’. Hence, it is crucial to more efficiently control the com…
Analysis of Electrical Energy Demands in Friction Stir Welding of Aluminum Alloys
2017
Abstract Manufacturing processes, as used for discrete part manufacturing, are responsible for a substantial part of the environmental impact of products. Despite that, most of metalworking processes are still poorly documented in terms of environmental footprint. To be more specific, the scientific research has well covered conventional machining processes, concerning the other processes there is a lack of knowledge in terms of environmental load characterization instead. The present paper aims to contribute to fill this knowledge gap and an energetic analysis of Friction Stir welding (FSW) is presented. Following the CO2PE! methodological approach, power studies and a preliminary time stu…
Manufacturing processes as material and energy efficiency strategies enablers: The case of Single Point Incremental Forming to reshape end-of-life me…
2021
Abstract Making materials consumes about 21% of the global energy demand; concerning metals production, it accounts for about 8% of total global energy consumption. Circular economy strategies such as longer life, more intense use, repair, product upgrades, modularity, remanufacturing, component reuse, and open/closed-loop recycling are strategies to put in place urgently to reduce the environmental impact of raw material production. Although recycling of metals is the most used strategy and is being improved in terms of efficiency, it is mandatory moving towards more virtuous circular economy strategies, such as product/component reuse. In this paper a novel reuse strategy for sheet metal …
A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency
2019
This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems&rsquo
Manufacturing strategies for efficiency in energy and resources use: The role of metal shaping processes
2017
Abstract Manufacturing sector nowadays has to deal with the global need to reduce the environmental impact of human activity. As manufacturing accounts for a significant portion of the global CO 2 emissions, scientific research should be addressed to understand the environmental impact of manufacturing processes and, in the meantime, to take advantage of their full potential in reducing the overall CO 2 emissions. The present review paper aims at describing the role of metal shaping processes in reducing the environmental impact across different stages of metal components life. Actually, an increased consciousness concerning both the environmental performances of manufacturing processes and…
Using an Adaptive High-Gain Extended Kalman Filter With a Car Efficiency Model
2010
The authors apply the Adaptive High-Gain Extended Kalman Filter (AEKF) to the problem of estimating engine efficiency with data gathered from normal driving. The AEKF is an extension of the traditional Kalman Filter that allows the filter to be reactive to perturbations without sacrificing noise filtering. An observability normal form of the engine efficiency model is developed for the AEKF. The continuous-discrete AEKF is presented along with strategies for dealing with asynchronous data. Empiric test results are presented and contrasted with EKF-derived results.Copyright © 2010 by ASME
Microstructural, mechanical and energy demand characterization of alternative WAAM techniques for Al-alloy parts production
2020
Abstract Additive manufacturing (AM) processes are gathering momentum as an alternative to conventional manufacturing processes. A research effort is being made worldwide to identify the most promising AM approaches. Within this category, wire arc additive manufacturing (WAAM) is among the most interesting, especially when large parts must be manufactured. In this paper, two different WAAM deposition techniques suitable for the deposition of Aluminum alloys, Cold Metal Transfer (CMT) and CMT mix drive, are analyzed and compared. With the aim of obtaining a clear picture concerning the two different techniques, microstructural analyses, mechanical property evaluation and electrical energy de…
Integrated WAAM-Subtractive Versus Pure Subtractive Manufacturing Approaches: An Energy Efficiency Comparison
2019
Over the last years, additive manufacturing (AM) has been gathering momentum both in the academic and in the industrial world. Besides the obvious benefits in terms of flexibility and process capabilities, the environmental performance of such processes has still to be properly analyzed. Actually, the advantages of additive manufacturing over conventional processes are not obvious. Indeed, different manufacturing approaches result in different amounts of involved material and in different processing energy demands. Environmental comparative analyses are hence crucial to properly characterize AM processes. In this paper, an energetic comparison between the emerging wire arc additive manufact…