Search results for "Eigenvalue"

showing 10 items of 344 documents

Numerical analysis of composite plates with multiple delaminations subjected to uniaxial buckling load

2006

Abstract In this paper the buckling and post-buckling behaviour of unidirectional and cross-ply composite laminated plates with multiple delaminations has been studied. Finite elements analyses have been performed, using a linear buckling model, based on the solution of the eigenvalues problem, and a non-linear one, based on an incremental-iterative method. With non-linear method large displacements have been taken into account and also contact constraints between sublaminates have been added to avoid their interpenetration. It has been found that both delamination length and position and stacking sequence of the plies influence the critical load of the plate; furthermore, linear and non-li…

Critical loadMaterials scienceComputer simulationnumerical analysisNumerical analysisComposite numberDelaminationGeneral Engineeringcomposite materialFinite element methoddelaminationBucklingCeramics and CompositesbucklingComposite materialcomposite laminated plateSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria IndustrialeEigenvalues and eigenvectors
researchProduct

Criminal networks analysis in missing data scenarios through graph distances.

2021

Data collected in criminal investigations may suffer from: (i) incompleteness, due to the covert nature of criminal organisations; (ii) incorrectness, caused by either unintentional data collection errors and intentional deception by criminals; (iii) inconsistency, when the same information is collected into law enforcement databases multiple times, or in different formats. In this paper we analyse nine real criminal networks of different nature (i.e., Mafia networks, criminal street gangs and terrorist organizations) in order to quantify the impact of incomplete data and to determine which network type is most affected by it. The networks are firstly pruned following two specific methods: …

Data AnalysisFOS: Computer and information sciencesComputer and Information SciencesScienceIntelligenceSocial SciencesTransportationCriminologyCivil EngineeringSocial NetworkingComputer Science - Computers and SocietyLaw EnforcementSociologyComputers and Society (cs.CY)PsychologyHumansComputer NetworksSocial and Information Networks (cs.SI)Algorithms; Humans; Terrorism; Criminals; Data Analysis; Social NetworkingSettore INF/01 - InformaticaQCognitive PsychologyRBiology and Life SciencesEigenvaluesComputer Science - Social and Information NetworksCriminalsTransportation InfrastructurePoliceRoadsProfessionsAlgebraLinear AlgebraPeople and PlacesPhysical SciencesEngineering and TechnologyCognitive ScienceMedicineLaw and Legal SciencesPopulation GroupingsTerrorismCrimeCriminal Justice SystemMathematicsNetwork AnalysisAlgorithmsResearch ArticleNeurosciencePLoS ONE
researchProduct

Oscillator Strengths of Electronic Excitations with Response Theory using Phase Including Natural Orbital Functionals

2013

The key characteristics of electronic excitations of many-electron systems, the excitation energies ωα and the oscillator strengths fα, can be obtained from linear response theory. In one-electron models and within the adiabatic approximation, the zeros of the inverse response matrix, which occur at the excitation energies, can be obtained from a simple diagonalization. Particular cases are the eigenvalue equations of time-dependent density functional theory (TDDFT), time-dependent density matrix functional theory, and the recently developed phase-including natural orbital (PINO) functional theory. In this paper, an expression for the oscillator strengths fα of the electronic excitations is…

Density matrixta114Chemistryexcitation energytiheysfunktionaaliteoriaGeneral Physics and AstronomyTime-dependent density functional theoryelektronitAdiabatic theoremMatrix (mathematics)Quantum mechanicsExcited stateDensity functional theoryeigenvalues and eigenfunctionsPhysical and Theoretical ChemistryAdiabatic processEigenvalues and eigenvectorsJournal of Chemical Physics
researchProduct

On the construction of lusternik-schnirelmann critical values with application to bifurcation problems

1987

An iterative method to construct Lusternik-Schnirelmann critical values is presented. Examples of its use to obtain numerical solutions to nonlinear eigenvalue problems and their bifurcation branches are given

Differential equationIterative methodApplied MathematicsMathematical analysisMathematics::General TopologyBifurcation diagramMathematics::Algebraic TopologyNonlinear systemBifurcation theoryTranscritical bifurcationAnalysisEigenvalues and eigenvectorsBifurcationMathematicsApplicable Analysis
researchProduct

Singular systems in dimension 3: Cuspidal case and tangent elliptic flat case

2007

We study two singular systems in R3. The first one is affine in control and we achieve weighted blowings-up to prove that singular trajectories exist and that they are not locally time optimal. The second one is linear in control. The characteristic vector field in sub-Riemannian geometry is generically singular at isolated points in dimension 3. We define a case with symmetries, which we call flat, and we parametrize the sub-Riemannian sphere. This sphere is subanalytic.

Dimension (vector space)Homogeneous spaceMathematical analysisTangentTangent vectorAffine transformationExceptional divisorSingular controlEigenvalues and eigenvectorsMathematics
researchProduct

Some qualitative properties for the total variation flow

2002

We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…

Dirichlet problemAsymptotic behaviourMathematical analysisGeodetic datumElliptic boundary value problemOperator (computer programming)Dirichlet eigenvaluePropagation of the supportFlow (mathematics)Neumann boundary conditionNonlinear parabolic equationsPoint (geometry)Total variation flowEigenvalue type problemAnalysisMathematics
researchProduct

Generalized dirichlet problem in nonlinear potential theory

1990

The operator extending the classical solution of the Dirichlet problem for the quasilinear elliptic equation divA(x,▽u)=0 akin to thep-Laplace equation is shown to be unique providedA obeys a specific order principle. The Keldych lemma is also generalized to this nonlinear setting.

Dirichlet problemDirichlet kernelsymbols.namesakeDirichlet eigenvalueGeneral MathematicsDirichlet's principleDirichlet boundary conditionMathematical analysissymbolsDirichlet L-functionDirichlet's energyElliptic boundary value problemMathematicsManuscripta Mathematica
researchProduct

An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities

2005

AbstractA multiplicity result for an eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities is obtained. The proof is based on a three critical points theorem for nondifferentiable functionals.

Dirichlet problemDiscontinuous nonlinearitiesApplied MathematicsMathematical analysisp-LaplacianMultiple solutionsMathematics::Optimization and ControlDirichlet's energyMathematics::Spectral TheoryEigenvalue Dirichlet problemCritical points of nonsmooth functionsNonlinear systemsymbols.namesakeDirichlet eigenvalueDirichlet's principleRayleigh–Faber–Krahn inequalitysymbolsp-LaplacianEigenvalues and eigenvectorsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Multiple solutions for a Dirichlet problem with p-Laplacian and set-valued nonlinearity

2008

AbstractThe existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via sub- and supersolution methods as well as variational techniques for nonsmooth functions.

Dirichlet problemGeneral MathematicsMathematical analysisNull (mathematics)Multiple solutions Dirichlet problem p-Laplacian set-valued nonlinearitySet (abstract data type)symbols.namesakeGeneralized gradientNonlinear systemDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principlep-LaplaciansymbolsMathematics
researchProduct

New isoperimetric estimates for solutions to Monge - Ampère equations

2009

Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.

Dirichlet problemMonge-Ampère operatoreigenvalue.Mathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsMonge–Ampère equationMonge-Ampère equationMathematics::Spectral TheoryMeasure (mathematics)Operator (computer programming)Settore MAT/05 - Analisi MatematicaAffine isoperimetric inequaltieRayleigh–Faber–Krahn inequalityAffine isoperimetric inequalitiesIsoperimetric inequalityLaplace operatorMathematical PhysicsAnalysisEigenvalues and eigenvectorsMathematics
researchProduct