Search results for "Electric current"
showing 10 items of 75 documents
Engineering the dynamics of topological spin textures by anisotropic spin-orbit torques
2020
Integrating topologically stabilized magnetic textures such as skyrmions as nanoscale information carriers into future technologies requires the reliable control by electric currents. Here, we uncover that the relevant skyrmion Hall effect, which describes the deflection of moving skyrmions from the current flow direction, acquires important corrections owing to anisotropic spin-orbit torques that alter the dynamics of topological spin structures. Thereby, we propose a viable means for manipulating the current-induced motion of skyrmions and antiskyrmions. Based on these insights, we demonstrate by first-principles calculations and symmetry arguments that the motion of spin textures can be …
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
2016
Magnetic skyrmions are highly promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their finite topological charge leads to a predicted "skyrmion Hall effect", in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we present nanoscale pump-probe imaging that for the first time reveals the real-time dynamics of skyrmions driven by current-induced spin orbit torque (SOT). We…
Phenomenology of current-skyrmion interactions in thin films with perpendicular magnetic anisotropy
2014
We study skyrmions in magnetic thin films with structural inversion asymmetry perpendicular to the film plane. We determine the magnetization texture of a single skyrmion and its dependence on the strength of the Dzyaloshinskii-Moriya interaction relative to the magnetostatic energy. Furthermore, we construct a phenomenological model that describes the interaction between the motion of skyrmions and electric currents to lowest order in spin-orbit coupling. We estimate the experimental verifiable velocities for current-driven motion of skyrmion textures based on available results obtained from domain walls dynamics.
Phenomenology of current-induced skyrmion motion in antiferromagnets
2016
We study current-driven skyrmion motion in uniaxial thin film antiferromagnets in the presence of the Dzyaloshinskii-Moriya interactions and in an external magnetic field. We phenomenologically include relaxation and current-induced torques due to both spin-orbit coupling and spatially inhomogeneous magnetic textures in the equation for the N\'eel vector of the antiferromagnet. Using the collective coordinate approach we apply the theory to a two-dimensional antiferromagnetic skyrmion and estimate the skyrmion velocity under an applied DC electric current.
2017
Topological magnetic textures - like skyrmions - have become a major player in the design of next-generation magnetic storage technology due to their stability and the control of their motion by ultra-low current densities. A major challenge to develop this new skyrmion-based technology is to achieve the controlled and deterministic creation of magnetic skyrmions without the need of complex setups. We demonstrate a solution to this challenge by showing how to create skyrmions and other magnetic textures in ferromagnetic thin films by means of a homogeneous DC current and without requiring Dzyaloshinskii-Moriya interactions. This is possible by exploiting a static loss of stability arising f…
Poincaré's role in the Crémieu-Pender controversy over electric convection
1989
Summary In the course of 1901, V. Cremieu published the results of some experiments carried out to test the magnetic effects of electric convection currents. According to Cremieu, his experiments had proved that convection currents had no magnetic effects and consequently they were not equivalent to conduction currents, that is they were not ‘real’ electric currents. These negative results conflicted with those of well-known experiments carried out by other researchers, in particular with Rowland's experiments, and with Maxwell's, Hertz's and Lorentz's theories, which was more shocking. The publication of Cremieu's experiments raised a controversy which involved directly or indirectly some …
Electric field driven domain wall transfer in hybrid structures
2012
Domain wall (DW) motion devices attracts much interest with their prospective logic and memory applications[1][2]. Present on-chip DW manipulations by a magnetic field of electric currents or electron spin torque raise the problem of high Ohmic energy losses. We show that such a difficulty can be avoided by applying an exchange field H eff to the magnetic layer from the proximate graphene (Gr), instead of using an actual magnetic field. H eff is shown to be dependent on carrier density gradient in Gr, which is easily manipulated with a gate voltage. A novel memory device implementing this concept is designed and modeled, demonstrating switching power well below femto-Joule while maintaining…
Narrow-band tunable terahertz detector in antiferromagnets via staggered-field and antidamping torques
2018
We study dynamics of antiferromagnets induced by simultaneous application of dc spin current and ac charge current, motivated by the requirement of all-electrically controlled devices in the terahertz (THz) gap (0.1--30 THz). We show that ac electric current, via N\'eel spin-orbit torques, can lock the phase of a steady rotating N\'eel vector whose precession is controlled by a dc spin current. In the phase-locking regime the frequency of the incoming ac signal coincides with the frequency of auto-oscillations, which for typical antiferromagnets falls into the THz range. The frequency of auto-oscillations is proportional to the precession-induced tilting of the magnetic sublattices related …
Dynamical and current-induced Dzyaloshinskii-Moriya interaction: Role for damping, gyromagnetism, and current-induced torques in noncollinear magnets
2020
Both applied electric currents and magnetization dynamics modify the Dzyaloshinskii-Moriya interaction (DMI), which we call current-induced DMI (CIDMI) and dynamical DMI (DDMI), respectively. We report a theory of CIDMI and DDMI. The inverse of CIDMI consists in charge pumping by a time-dependent gradient of magnetization ${\ensuremath{\partial}}^{2}\mathbit{M}(\mathbit{r},t)/\ensuremath{\partial}\mathbit{r}\ensuremath{\partial}t$, while the inverse of DDMI describes the torque generated by ${\ensuremath{\partial}}^{2}\mathbit{M}(\mathbit{r},t)/\ensuremath{\partial}\mathbit{r}\ensuremath{\partial}t$. In noncollinear magnets, CIDMI and DDMI depend on the local magnetization direction. The re…
Development and test of iron-free quadrupole lenses with high magnetic flux densities
2003
Abstract Iron-free magnetic quadrupole lenses have been developed for the focusing of energetic bunched heavy-ion beams. These devices are operated in a pulsed mode and provide very strong magnetic fields. A magnetic flux density of more than 14 T has been reached in a 100 mm long quadrupole with a 20 mm wide aperture, which corresponds to a magnetic flux density of ∼1400 T/m. The pulse duration of the applied electric current is approximately 300 μs with a flat top of several μs. The calculated and measured field properties of the quadrupoles are presented. In a first test experiment with a fast-extracted 650 MeV/u 197 Au 79+ beam (bunch length ∼500 ns) at GSI the focusing properties could…