Search results for "Electrolysis"
showing 10 items of 109 documents
Selective and Scalable Electrosynthesis of 2H-2-(Aryl)-benzo[d]-1,2,3-triazoles and Their N-Oxides by Using Leaded Bronze Cathodes.
2020
Abstract Electrosynthesis of 2H‐2‐(aryl)benzo[d]‐1,2,3‐triazoles and their N‐oxides from 2‐nitroazobenzene derivatives is reported. The electrolysis is conducted in a very simple undivided cell under constant current conditions with a leaded bronze cathode and a glassy carbon anode. The product distribution between 2H‐2‐(aryl)benzo[d]‐1,2,3‐triazoles and their N‐oxides can be guided by simply controlling the current density and the amount of the charge applied. The reaction tolerates several sensitive functional groups in reductive electrochemistry. The usefulness and the applicability of the synthetic method is demonstrated by a formal synthesis of an antiviral compound.
Synthesis of polymer nanogels by electro-Fenton process: investigation of the effect of main operation parameters
2017
Recently, electro-Fenton (EF) process has been shown as a promising, facile, effective, low cost and environmentally-friendly alternative for synthesizing polymer nanogels suitable as biocompatible nanocarriers for emerging biomedical applications. Here, the electrochemically-assisted modification of poly(vinylpyrrolidone) (PVP) by EF process was studied to assess the role of key operation parameters for a precise modulation of polymer crosslinking and its functionalization with [sbnd]COOH and succinimide groups. The dimensions of the nanogels, in terms of hydrodynamic radius (Rh) and weight-average molecular weight (Mw), can be tuned up by controlling the electrolysis time, current density…
Evolutionary Design Optimization of an Alkaline Water Electrolysis Cell for Hydrogen Production
2020
Hydrogen is an excellent energy source for long-term storage and free of greenhouse gases. However, its high production cost remains an obstacle to its advancement. The two main parameters contributing to the high cost include the cost of electricity and the cost of initial financial investment. It is possible to reduce the latter by the optimization of system design and operation conditions, allowing the reduction of the cell voltage. Because the CAPEX (initial cost divided by total hydrogen production of the electrolyzer) decreases according to current density but the OPEX (operating cost depending on the cell voltage) increases depending on the current density, there exists an optimal cu…
Bio-based 1,3-diisobutyl imidazolium hydrogen oxalate [iBu 2 IM](HC 2 O 4 ) as CO 2 shuttle
2017
International audience; This manuscript describes the using of biosourced L-valine, oxalic acid and glyoxal to produce a biobased imidazolium hydrogen oxalate [iBu(2)IM](HC2O4) which is converted to its related hydrogen carbonate salt by a simple electrolysis without using strong base. The addition of weak protic acids to the latter compound leads to a rapid and quantitative CO2 release with formation of the starting hydrogen oxalate salt or a new halide free bio-based ionic liquid [iBu(2)IM](AcO) which is able to adsorb reversibly the CO2 at room temperature. The protonation reactions, combined with electrolysis, could then be a promising alternative solution for storage and transport of C…
High-Temperature Electrolysis of Kraft Lignin for Selective Vanillin Formation
2020
Lignin represents the largest renewable resource of aromatic moieties on earth and harbors a huge potential as a sustainable feedstock for the synthesis of biobased aromatic fine chemicals. Due to the complex, heterogeneous, and robust chemical structure of the biopolymer, the valorization is associated with significant challenges. Unfortunately, technical lignins, which are a large side stream of the pulp and paper industries, are mainly thermally exploited. In this study, technical Kraft lignin was selectively electrochemically depolymerized to the aroma chemical vanillin. Using electricity, toxic and/or expensive oxidizers could be replaced. The electrodegradation of Kraft lignin was per…
Bioactivity Performance of Pure Mg after Plasma Electrolytic Oxidation in Silicate-Based Solutions
2021
The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), …
Facile crosslinking of poly(vinylpyrrolidone) by electro-oxidation with IrO2-based anode under potentiostatic conditions
2018
Abstract: The modification of polymer architectures by reaction with chemically adsorbed hydroxyl radicals has been thoroughly investigated by electrolyzing dilute aqueous solutions of the biocompatible polymer poly(vinylpyrrolidone) (PVP), using an undivided electrolytic cell with a Ti/IrO2–Ta2O5(DSA®) anode. Several electrolyses were performed to assess the influence of the applied potential, the circulated charge and the PVP concentration, which was always kept low to avoid chain overlapping. From the results obtained, it can be concluded that the electro-oxidation of PVP solutions using a cheap anode is an effective method to crosslink initially isolated polymer chains, eventually incre…
Nanostructured electrodes for hydrogen production in alkaline electrolyzer
2018
Abstract Ever-widespread employment of renewable energy sources, such as wind and sun, request the simultaneous use of effective energy storage systems owing to the intermittent and unpredictable energy generation by these sources. The most reliable storage systems currently under investigation are batteries and electrochemical cells for hydrogen production from water splitting. Both systems store chemical energy which can be converted on demand. The low power density is the weakness of the batteries while the high production cost limits currently the wide use of hydrogen from electrochemical water splitting. In this work, attention was focused on the use of nanostructured Ni as a cathode f…
Coated interconnects development for high temperature water vapour electrolysis: Study in anode atmospher
2013
International audience; High temperature water vapour electrolysis (HTE) is an efficient technology for hydrogen production. In this context, a commercial stainless steel, K41X (AISI 441), was chosen as interconnect. In a previous paper, the high temperature corrosion and the electrical conductivity were evaluated in both anode (O-2-H2O) and cathode (H-2-H2O) atmosphere at 800 degrees C. In O-2-H2O atmosphere, the formation of a thin chromia protective layer was observed. Nevertheless, the ASR parameter measured was higher than the maximum accepted value. These results, in addition with chromium evaporation measurements, proved that the K41X alloy is not suitable for HTE interconnect applic…
PEM electrolyzer characterization with carbon-based hardware and material sets
2021
Abstract The research and development of proton exchange membrane water electrolysis (PEMWE) is an upcoming and growing area due to a rising interest in hydrogen as an energy carrier. Operating conditions are harsher than in a fuel cell system, particularly because the potentials required for the oxygen evolution reaction are significantly higher. In commercial water electrolysis systems, this is compensated by typically using titanium material sets that are often protected against oxidation through coating processes. Such material choices make small scale research hardware and porous transport layers expensive and difficult to source. In this work, we show that the stability of traditional…