Search results for "Electrolyte"
showing 10 items of 746 documents
Microporous alumina membranes electrochemically grown
2003
Abstract The electrochemical fabrication of alumina membranes by anodizing of aluminium in phosphoric acid and oxalic acid solutions, in the temperature interval from −1 to 16 °C, was investigated in order to study the influence of different parameters (initial treatment of aluminium surface, nature and composition of electrolyte, temperature) on the final characteristics of the membranes. Porous layers were grown using a linear potential scan at 0.2 V s −1 up to 160 V in H 3 PO 4 solution and 70 V in oxalic acid solution. The efficiency of porous layer formation was calculated by using Faraday's law and weight measurements. Pore size distribution and porosity of membranes prepared in 0.4 M…
In situ AFM study of proton-assisted electrochemical oxidation/reduction of microparticles of organic dyes
2008
In situ atomic force microscopy (AFM) images of crystals of organic dyes alizarin, indigo and morin have been monitored during the course of their solid-state electrochemical oxidation/reduction in contact with aqueous acetate buffer. Such images indicate that proton-assisted reduction and oxidation processes are localized in a shallow layer in the vicinity of the particle/electrolyte interface, in agreement with expectances from the Lovric and Scholz model with significantly restricted proton diffusion across the solids. Keywords: Voltammetry of nanoparticles, Atomic force microscopy, Organic dyes, Diffusion
Distribution potential in electrified microemulsions with potential determining salts
2018
Abstract The electrical polarization of lamellar and water-in-oil microemulsions composed of the aqueous solution of a potential determining salt (PDS), an organic solvent and a nonionic surfactant has been studied. The distribution of the PDS ions across the interface between two immiscible electrolyte solutions (ITIES) generates an electrical potential difference which can be used to control charge transfer processes. In macroscopic ITIES, this distribution potential is independent of the PDS concentration and can be determined from the electroneutrality condition far from the interface. In microemulsions, on the contrary, the distribution potential is smaller in magnitude and depends on …
Speciation of Organic Matter in Natural Waters-interaction of polyacrylates and polymethacrylates with major cation components of seawater
2004
Abstract The speciation of some high molecular weight polycarboxylates was studied in different ionic media. Polyacrylates here investigated ( W =2.0, 5.1 and 20.0 kDa) form weak species with alkali metal cations ( K =10 2 mol l −1 , t =25 °C, I =0 mol l −1 ) and quite stable complexes with alkaline earth metal cations ( K >10 6 mol l −1 , t =25 °C, I =0 mol l −1 ). Results are reported from experiments performed in a multicomponent electrolyte solution simulating the major composition of seawater (artificial seawater). Protonation constants in this medium are expressed as a polynomial function of S 1/2 ( S =salinity) and the sharp lowering with respect to values obtained in non-interacting…
Estimation of free energies of anion transfer from solid-state electrochemistry of alkynyl-based Au(I) dinuclear and Au(I)–Cu(I) cluster complexes co…
2011
A method is presented to determine the free energy for anion transfer between two solvents. This is based on solid-state electrochemistry of alkynyl-based dinuclear Au(I) complexes (AuC2R)2PPh2C6H4PPh2 (L1: R=Fc; L2: R=C6H4Fc) and heterometallic Au(I)–Cu(I) [{Au3Cu2 (C2R)6}Au3(PPh2C6H4PPh2)3](PF6)2 (L3: R=Fc; L4: R=C6H4Fc) complexes. These compounds exhibit a reversible ferrocenyl-centred solid-state oxidation processes involving anion insertion in contact with aqueous, MeOH and MeCN electrolytes. Voltammetric data can be used for a direct measurement of the free energy of ion transfer using midpeak potentials in solutions of suitable salts in the solvents separately or in mixtures of the s…
Polyacrylate Protonation in Various Aqueous Ionic Media at Different Temperatures and Ionic Strengths
2000
The protonation constants of the polyacrylate anion (molecular mass 2000 Da) in Et4NI, Me4NCl, LiCl, LiNO3, NaCl, NaNO3, and KCl aqueous solution, were determined in a wide range of ionic strengths. A three-parameter approximation was used to express protonation constants as a function of the dissociation degree α, and their dependence on ionic strength was considered using a simple polynomial expansion. Differences in log KH between different data in different media were interpreted in terms of weak complex formation between polyacrylate and alkali metal cations. Measurements were also performed at different temperatures (15 ≤ T/°C ≤ 55) in order to calculate enthalpy and entropy changes f…
Sequestration of organometallic compounds by natural organic matter. binding of trimethyltin(IV) by fulvic and alginic acids
2006
The binding capacity of fulvic and alginic acids towards trimethyl tin(IV) cation was quantitatively determined in order to evaluate the sequestering ability of toxic organometallic compounds by natural organic matter. Investigations were performed in the pH range of natural waters (5–8.5) where the carboxylate groups, largely present in both sequestering agents, are the main binding sites. A chemical interaction model, according to which both the protonation of polyelectrolyte ligands and the hydrolysis of the organotin cation in NaCl aqueous solution were considered, was used to define the speciation of the systems under investigation. Measurements performed at different ionic strength va…
On the Existence of Different Zeolite-Associated Topological Redox Isomers. Electrochemistry of the Y Zeolite-Associated Mn(Salen)N3 Complex
2002
The electrochemical properties of Y zeolite-associated MnIII(salen)N3 (salen = trans-(R,R)-1,2-bis(salicyldeneamino)cyclohexane) has been investigated using polymer film electrodes immersed into neutral aqueous solutions. Zeolite Y-associated Mn(III)−salen complexes are reduced in one-electron reversible process at −0.25 V versus SCE. The electrochemical response is discussed in terms of the existence of two topological redox isomers: a weakly boundary-associated Mn(salen) complex, whose electrochemical response corresponds to a reversible one-electron transfer controlled by diffusion of the positive ions of the supporting electrolyte through the zeolite surface windows and channels, and a…
Partial molar volumes of cobalt(II) chloride in ethanol + water at 298.15 K
1996
Densities of ethanol + water + cobalt(II) chloride mixtures have been measured with an oscillating-tube densimeter over a large range of concentrations of salt, at 298.15 K. From these densities, apparent molar volumes of the electrolyte in these mixtures have been calculated, and partial molar volumes at infinite dilution have been evaluated, at different concentrations of alcohol in the solvent.
Study of Redox Processes in Zeolite Y-Associated 2,4,6-Triphenylthiopyrylium Ion by Square Wave Voltammetry
2003
The electrochemical responses of 2,4,6-triphenylthiopyrylium ion (TTP+) in solution and attached to zeolite Y (TTP@Y) are described using cyclic and square wave voltammetries upon immersion of zeolite-modified polymer film electrodes in MeCN (LiClO4, Et4NClO4, and BuN4PF6 electrolytes) and aqueous (LiNO3, NaNO3, and KNO3 electrolytes) media. The electrochemistry of TTP@Y in contact with Bu4NPF6/MeCN is identical to that of TTP(BF4) in solution, with reduction processes at −0.25, −0.74, and −1.36 V vs SCE, and oxidation steps at +0.85 and +1.11 V. This response differs from those obtained for TTP@Y in Et4NClO4/MeCN and LiClO4/MeCN electrolytes. In contact with aqueous electrolytes, TTP@Y dis…