Search results for "Electron Capture"

showing 10 items of 90 documents

Qvalue and half-life of double-electron capture in184Os

2012

The observation of neutrinoless double-beta transitionswould reveal physics beyond the Standard Model, asit would establish neutrinos to be Majorana particles,which implies a violation of the lepton number conserva-tion. Experiments searching for these transitions have fo-cused on the detection of neutrinoless double-beta decay(0 ) rather than neutrinoless double-electron capture(0). One reason among others is in general the sig-ni cantly shorter half-life of the 0 process. However,in the case of neutrinoless double-electron capture, thetransition is expected to be resonantly enhanced if theinitial and the nal state of the transition are degeneratein energy [1{3].In this work, we inves…

PhysicsNuclear physicsNuclear and High Energy PhysicsMAJORANAParticle physicsQ valueElectron captureDouble beta decayPhysics beyond the Standard ModelNeutrinoBeta decayLepton numberPhysical Review C
researchProduct

Electron capture on116In and implications for nuclear structure related to double-βdecay

2013

The electron capture decay branch of ${}^{116}$In has been measured to be $[2.46\ifmmode\pm\else\textpm\fi{}0.44(\mathrm{stat}.)\ifmmode\pm\else\textpm\fi{}0.39(\mathrm{syst}.)]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ using Penning trap-assisted decay spectroscopy. The corresponding Gamow-Teller transition strength is shown to be compatible with the most recent value extracted from the $(p,n)$ charge-exchange reaction, providing a resolution to longstanding discrepancies. This transition can now be used as a reliable benchmark for nuclear-structure calculations of the matrix element for the neutrinoless double-$\ensuremath{\beta}$ decay of ${}^{116}$Cd and other nuclides.

PhysicsNuclear and High Energy PhysicsParticle physicsTransition strengthElectron captureNuclear structureMatrix elementNuclideSpectroscopyPhysical Review C
researchProduct

Neutrinoless double electron capture as a tool to measure the electron neutrino mass

1983

Abstract A nucleus (Z, A) may capture two atomic electrons to become (Z − 2, A). For Majorana neutrinos this may occur with no neutrino emission, the process is a virtual mixing of the parent atom and the daughter atom with two electron holes. The process becomes real as the daughter atom de-excites. In some cases where the daughter nucleus is excited, the neutrinoless decay may be enhanced by its proximity to a virtual resonance. We identify the 112 Sn → 112 Cd transition as a good case. The no-neutrino lifetime for mν = 30 eV ranges from 1022 to 1027 years as a function of the insufficiently well determined distance to resonance. The signatures of the two- or no-neutrino modes are very di…

PhysicsNuclear and High Energy PhysicsElectron captureHigh Energy Physics::PhenomenologyFísicaWeak interactionNuclear physicsMAJORANAExcited stateAtomHigh Energy Physics::ExperimentAtomic physicsNeutrinoNuclear ExperimentNeutrino oscillationElectron neutrinoGeneral Theoretical PhysicsNuclear Physics B
researchProduct

Production of highly charged ions of rare species by laser-induced desorption inside an electron beam ion trap

2019

This paper reports on the development and testing of a novel, highly efficient technique for the injection of very rare species into electron beam ion traps (EBITs) for the production of highly charged ions (HCI). It relies on in-trap laser-induced desorption of atoms from a sample brought very close to the electron beam resulting in a very high capture efficiency in the EBIT. We have demonstrated a steady production of HCI of the stable isotope 165Ho from samples of only 1012 atoms (∼300 pg) in charge states up to 45+. HCI of these species can be subsequently extracted for use in other experiments or stored in the trapping volume of the EBIT for spectroscopic measurements. The high efficie…

Speichertechnik - Abteilung BlaumMaterials scienceAtomic Physics (physics.atom-ph)Electron captureElectronvoltFOS: Physical scienceschemistry.chemical_element01 natural sciences7. Clean energyPhysics - Atomic Physics010305 fluids & plasmasIon0103 physical sciencesPhysics::Atomic PhysicsInstrumentation010302 applied physicsRange (particle radiation)Stable isotope ratioPhysics - Plasma PhysicsAtomic massPlasma Physics (physics.plasm-ph)chemistryddc:620Atomic physicsHolmiumElectron beam ion trapReview of Scientific Instruments
researchProduct

The Capabilities of monochromatic EC neutrino beams with the SPS upgrade

2007

The goal for future neutrino facilities is the determination of the U(e3) mixing and CP violation in neutrino oscillations. This will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We conclude that the SPS upgrade to 1000 GeV is crucial to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline. We compare the physics potential for two different…

PhysicsHistoryParticle physicsLarge Hadron ColliderElectron capturePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorFOS: Physical sciencesFísicaComputer Science ApplicationsEducationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)UpgradeCP violationHigh Energy Physics::ExperimentMonochromatic colorNeutrinoNeutrino oscillation
researchProduct

Double beta decays of 124Xe investigated in the QRPA framework

2013

The two-neutrino (2ν2β) and neutrinoless (0ν2β) double beta decays of 124Xe are investigated. Decays to the ground state, , and various 0+ and 2+ excited states in 124Te are considered. The corresponding nuclear matrix elements have been calculated by using the quasiparticle random-phase approximation combined with the multiple-commutator model. G-matrix-based effective nuclear interactions have been used in realistic single-particle model spaces. All possible channels, β+β+, β+EC, and ECEC, are discussed for both the 2ν2β and 0ν2β decays. The associated half-lives are computed, in particular the one corresponding to the resonant neutrinoless double electron capture transition to the 2790.4…

Semileptonic decayPhysicsNuclear and High Energy PhysicsElectron capturechemistry.chemical_elementNuclear physicsXenonchemistryDouble beta decayExcited stateQuasiparticleBeta (velocity)Atomic physicsGround stateJournal of Physics G: Nuclear and Particle Physics
researchProduct

Sulfuric acid cleanup and KOH-ethanol treatment for confirmation of organochlorine pesticides and polychlorinated biphenyls: application to wastewate…

1987

Abstract The efficacy of sulfuric acid cleanup and KOH-ethanol hydrolysis confirmation was studied for 22 organochlorine pesticides and 2 polychlorinated biphenyls (PCBs). Mean recoveries for different treatment times are given. The method was applied to analysis of several wastewater samples by gas chromatography with electron capture detection. Organochlorine compounds were extracted by using separatory funnels and 15% diethyl ether in hexane as extractant. All the compounds studied could be analyzed except trifluralin, dichloran, dieldrin, and endrin, which were destroyed after treatment with concentrated H2S04. The pesticides found most commonly in the samples analyzed were fenson, tetr…

Tetradifonchemistry.chemical_compoundElectron capture detectorDieldrinChromatographychemistryEndrinDicofolMethoxychlorGeneral ChemistryPesticideLindane
researchProduct

High-precision measurement of the mass difference between 102Pd and 102Ru

2019

The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyväskylä. Th…

neutrinoless double-electron capturepenning trapQ-valuesydinfysiikkahigh-precision mass spectrometry
researchProduct

Pulsed gas injection for X-ray spectroscopy of highly charged ions stored in the magnetic trapping mode of an electron beam ion trap

1998

Abstract Highly charged atoms produced in an electron beam ion trap were stored after the electron beam was turned off by operating the trap in the magnetic trapping mode. Such storage allowed monitoring charge exchange reactions between the stored ions and residual neutral gas present in the trap by X-ray detection. The charge exchange reactions were enhanced by the application of a pulse of neutral gas. The method was exemplified for the case of H-like uranium interacting with neutral neon, where the K-shell X-rays and the series limit for the electron capture of U91+ were observed.

Condensed Matter::Quantum GasesNuclear and High Energy PhysicsIon beamElectron capturechemistry.chemical_elementPenning trapIonNeonchemistryCathode rayPhysics::Atomic PhysicsIon trapAtomic physicsInstrumentationElectron beam ion trapNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

A combined beta-beam and electron capture neutrino experiment

2009

The next generation of long baseline neutrino experiments will aim at determining the value of the unknown mixing angle, theta_{13}, the type of neutrino mass hierarchy and the presence of CP-violation in the lepton sector. Beta-beams and electron capture experiments have been studied as viable candidates for long baseline experiments. They use a very clean electron neutrino beam from the beta-decays or electron capture decays of boosted ions. In the present article we consider an hybrid setup which combines a beta-beam with an electron capture beam by using boosted Ytterbium ions. We study the sensitivity to the CP-violating phase delta and the theta_{13} angle, the CP-discovery potential …

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron captureHigh Energy Physics::PhenomenologyPhase (waves)FOS: Physical sciencesFísica01 natural sciences7. Clean energyIonHigh Energy Physics - PhenomenologyCP violationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino PhysicsHigh Energy Physics::ExperimentSensitivity (control systems)Neutrino010306 general physicsElectron neutrinoBeam (structure)Lepton
researchProduct